Deep Learning —

Classifying Radio Galaxies with Convolutional Neural Network

UNIVERS

Xinyu Mai University of Iowa Dept. of Physics & Astronomy

THE UNIVERSITY

Machine Learning

Deep Learning

Answers

Deep Learning

- * A type of feed-forward neural network model
- * Has multi-layer structure
- maps Convolutional layers

* Has some types of specialization for being able to pick out or detect patterns * Develops multiple feature detectors and use them to develop several feature

Big Data

- Karl G . Jansky Very Large Array Sky Survey (VLASS)
- Australian Square-Kilometre-Array Pathfinder (ASKAP)
- * Square Kilometre Array (SKA)

	VLASS Summary		
	Frequency	2-4GHz	
J	Resolution	2.5 arcsec	
	Sky coverage	All Sky North of Dec40 deg. (33885	
	Sensitivity per epoch	120 µJy RMS	
	Combined (3 epoch) sensitivity	69 µJy RMS	
	Polarization	I,Q,U	
	Cadence	3 epochs separated by 32 months	
	Start Date	September 15 2017	
	Expected number of sources	~5,000,000	

Radio Galaxies

- radio galaxies.
- * Radio galaxies are traditionally classified into two classes:

Fanaroff-Riley Class I (FRI) and Class II (FRII)

* Due to the supermassive blackhole in the center of the galaxy, a large amount of energy is emitted as the form of radio, this radio emitter is characterized as

FRI

Bright energy jet in • the center

• FRII

lobes

•

Faint jets but bright hotspots at the end of

• Compact

•

Unresolved sources has single non diffuse component

Тн

• Interesting Source •

Unresolved sources

Τн INIVE

Classifying Radio Galaxies

- * Our group is using sources in the VLASS Quicklook images to train classes
- artifacts) and 'Interesting' source (FRII & tailed/diffuse sources)

*

Type	Sample #	Train	Val
Interesting Source	833	762	191
Boring Source	120	762	191

* We identified them by hands into categories of 'Boring' source (Compact &

Simple Neural Network Training Architecture

Input images 150x150x2

5x5 Conv. 4 Max-pooling 2x2

3x3 Conv. 6 Max-pooling 2x2

3x3 Conv. 8 Max-pooling 2x2

Model Evaluation

- The model was trained on radio galaxies images of 2 classes for 200 epochs.
- The training accuracy achieved an overall accuracy of ~99% and a loss of ~0.03% for training and validation.

Challenges & What we need to do next... UN

- * Testing Model performance on testing dataset
- Unbalanced number of sample images.
 - More data is needed
 - data

- Data augmentation by flipping and rotating images to generate sufficient

Reference

- Chollet, F. (2017). Deep Learning with Python . Manning. ISBN: 9781617294433 *
- *
- Web.
- * Karl G. Jansky Very Large Array Sky Survey (VLASS) Quick look images
- Autokeras, Tensorflow, <u>https://science.nrao.edu/science/surveys/vlass</u>

Alhassan, Wathela, A R Taylor, and Mattia Vaccari. "The FIRST Classifier: Compact and Extended Radio Galaxy Classification Using Deep Convolutional Neural Networks." Monthly Notices of the Royal Astronomical Society 480.2 (2018): 2085–2093. Crossref. Web.

Brown, Shea et al. "Classifying Complex Faraday Spectra with Convolutional Neural Networks." Monthly Notices of the Royal Astronomical Society (2018): n. pag. Crossref.