
  

Machine Learning to Augment 
Material’s Property Prediction

 
Hartwin Peelaers

Department of Physics & Astronomy
University of Kansas



First-principles calculations
No fitting parameters!

Start from the foundation of quantum mechanics
– many-body Schrödinger equation

All properties of the system 
→ solve for many-body wavefunction

→ depends on 3N spatial coordinates
(3 Cartesian coordinates x N particles)

Example: bulk Si: discretize on 10x10x10 grid: need to 
store 10138 complex numbers
(there are approximately 1082 atoms in the universe...)



Density functional theory: introduction

Nobel prize in Chemistry
1998

→depends only on 3 spatial coordinates
All other quantities are functionals of the density:

Walter Kohn
1923 – 2016

Hohenberg and Kohn identified the electronic density as the fundamental 
quantity:

Example: bulk Si: only need to store 105 complex numbers
→ only ~1.6 Mb



  

How to describe a crystal?
Infinite crystal: use periodic boundary conditions

Use smallest repeat unit: unit cell 

Specify vectors of unit cell: “lattice”
+ positions of atoms: “basis” → crystal is defined

Different materials: different atoms, different unit cells (hexagonal, cubic,…), different positions 
of atoms within unit cell

Symmetry is important



  

What can Density Functional Theory (DFT) do?

Density functional theory

Experiments

Structural parameters

Band structures

Effect of strain

Effect of alloying

Defects/doping

Absorption spectra

Phonon spectra

Loss mechanisms

Mobility

Surfaces

Nanostructures

Lots of options, but calculations are computationally expensive 

Molecular dynamics

Magnetic properties



  

Machine learning, big data, and DFT
Calculations are expensive → want to avoid them! 
→ machine learning → requires a lot of 
calculations → ...

Step 1: get enough data!

   Materials genome initiative: “discover, manufacture, and 
deploy advanced materials twice as fast, at a fraction of the 
cost” 

→ calculational aspect: Materials Project: “high-throughput 
calculations”: currently basic data for 124,515 inorganic 
compounds

But: most calculations calculated using methods that are fast 
(on a supercomputer), but not that accurate...



  

Machine learning, big data, and DFT
Step 2: how to use inaccurate data?
   Funnel method: 

Balance amount of calculations with accuracy 
(computational cost)

Obtain criteria to filter calculations → need descriptors

1) Use physical intuition+knowledge of accuracy of 
calculations: new transparent conducting oxide: band gap 
needs to be large enough 

Woods-Robinson et al., Chem. Mater. 30, 8375 (2018)



  

Machine learning, big data, and DFT
Alternative: Use small amount of accurate data + machine learning to find (unexpected) descriptors from 
small training sets

1) create a large pool of possible descriptors by combining elementary physical properties of atoms or 
easily calculated quantities
2) use compressed sensing to find best descriptor to distinguish metal/non-metal, crystal structure, 
topological properties,... 
 

Ouyang et al., Phys. Rev. Materials 2, 083802 (2018)

3) once you have a 
descriptor → use for other 
materials to make predictions



  

Compressed sensing
Signal processing technique: find solutions to underdetermined linear systems

Problem: 

  

Matrices:

A: (m by N) → measurement matrix
x: (N by 1) → actual signal
y: (m by 1) → measurement vector

find x such that y=Ax with m<<N

→ no unique solution
→ not possible to reconstruct x from the 
m measurements y?



  

Compressed sensing
Many signals have redundancy → sparse when represented in 
some domain
E.g.: in reciprocal space

→ use this to look for sparsest solution of system

 

http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python Nelson et al., Phys. Rev. B 88, 155105 (2013)

Real space                    →                Reciprocal space             
    

http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python


  

Compressed sensing
Many signals have redundancy → sparse when represented in 
some domain
E.g.: in reciprocal space

→ use this to look for sparsest solution of system

Minimize L
1
 norm

 

http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python

Why L
1
 norm? → Find sparse 

solutions

Example: 10y + 7x = 20, find solution 
with smallest norm

Nelson et al., Phys. Rev. B 88, 155105 (2013)

L
2
 norm: vector length

L
1
 norm: Manhattan 

distance

Example notebook: 
gitlab.com/peelaers/machine-learning-talk

http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python


  

Compressed sensing

http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python

Reconstruct image with only 
10% of data

Reconstruct image with only 1% of data!

http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python


  

Finding stable alloys
Alloying is a great tool to modify the properties of a material

Examples: stainless steel: iron, 11% chromium, max 1.2% carbon, some molybdenum,...

Semiconductors: change band gap, lattice constants, 
band alignment

 Battery electrodes:

How do ions 
intercalate in 
cathode/anode? 
Are there low 
energy ordered 
structures?
What are the 
thermodynamic 
properties?

Calculational issue:

Need to be able to describe disordered 
systems and small alloy 
concentrations → requires large 
simulation cells



  

Cluster expansion
Possible solution: Use first-principles calculations in small simulation cells to construct a model of the alloy, 
and use that!

But how to do so?  

Use an expansion (similar to Taylor series)

E: property of interest
σ: vector identifying alloy: decode all information as 
pseudo-spins:
if a position is occupied by atom A: +1, else 0
→ vector uniquely identifies alloy

f: sum over clusters
J: coefficients (unknown, but will fit from calculations)
Π: cluster basis function (accounting and symmetry)

Chang et al., J. Phys.: Condens. Matter 31, 325901 (2019)



  

Cluster expansion

Big question: how to pick the clusters: 
*distance between elements (cluster radius)
*number of elements in cluster: when to truncate?
 → combinatorics explode
And remember: each calculation we do is very time-consuming

So how to select as few calculations as possible, while 
obtaining a good expansion?

Possibilities include: lucky guesses, genetic algorithms,…

But also compressive sensing!

Nelson et al., Phys. Rev. B 88, 155105 (2013)



  

Cluster expansion
Random structures do not exploit sparseness and shape of cluster functions

Combine selection of new test calculations with Bayesian inference

But maintain sparsity by selecting the shape of the priors 

Pairs: nearest-neighbor                    second-nearest                        third-nearest neighbors

Nelson et al., Phys. Rev. B 88, 155105 (2013)



  

Finding ground state structure of a material
Usually: we already know a lot of information: symmetry, stoichiometry, structure of chemical similar structures 
(e.g., if we want to find the crystal structure of Ge, the known structure of Si would be a good guess)

→we can usually find ground state

But: if all this information is absent, the parameter space is huge! (and calculations are time-consuming)
(e.g., what structures are found at high pressure)

Lots of methods to avoid brute force: simulated annealing, genetic algorithms, particle swarm 
optimalisations, Bayesian optimization,...

→ machine learning can play an important role 



  

Simulating kinetic processes
First-principles calculations: all at 0K

How to introduce temperature: perturbation theory

But not sufficient to simulate a lot of processes, that require large number of atoms: 
● how do Li-ions move between the layers of the electrode?
● how do liquids behave?
● how do materials melt?
● how are crystals grown?
● protein folding

→ need to be able to do molecular dynamics: extremely expensive using first-principles

Possible solution: use limited first-principle calculations to obtain classical potentials, and use these potentials 
to do the simulations

→ use machine-learning to obtain these potentials 



  

Conclusions
● Incomplete overview of machine learning to augment first-principles calculations

● Focused on compressive sensing

● Difference between L1 and L2 norm

● Example: reconstructing a wave from rough sampling

● Use of compressive sensing to find insights from limited amount of data

● Cluster expansion as method to describe alloys/intercalation/…

● Role of compressive sensing

● Structure minimization and dynamics

Machine learning has lots of potential to augment first-principles calculations!



  

Questions?


