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First-principles calculations
No fitting parameters!

Start from the foundation of quantum mechanics
— many-body Schrodinger equation
HY = W
All properties of the system

— solve for many-body wavefunction
Y (Fl . FQ . Tt FN )9 depends on 3N spatial coordinates

(3 Cartesian coordinates x N particles)

Example: bulk Si: discretize on 10x10x10 grid: need to
store 10**®* complex numbers
(there are approximately 10% atoms in the universe...)



Density functional theory: introduction

Iter Ko “ Nobel prize in Chemistry

1923 -2016 1998
Hohenberg and Kohn identified the electronic density as the fundamental
quantity: TL(I‘)-> depends only on 3 spatial coordinates

All other quantities are functionals of the density:
En ()], ®[n(M)], Oln(r)],

Example: bulk Si: only need to store 10° complex numbers
- only ~1.6 Mb



How to describe a crystal?

Infinite crystal: use periodic boundary conditions

p; 7 XD
. . 4 = . . A * A0 /'
Use smallest repeat unit: unit cell . COC XD
» o X o \:'-:i: \3{__ . )
@ 5
Specify vectors of unit cell: “lattice” lgﬁ L l!!!! Sgs
+ positions of atoms: “basis” - crystal is defined
basis lattice crystal

Different materials: different atoms, different unit cells (hexagonal cubic,...), different posmons

of atoms within unit cell
Symmetry is important

primitive body centered face centered




What can Density Functional Theory (DFT) do?

[ Nanostructures ][ Magnetic properties ]

[ Surfaces ] [ Structural parameters ]
N Experiments ] f
[ Mobility ] [ Band structures
[ Loss mechanisms ] j ! Effect of strain

] [ Density functional theory]

[ Absorption spectra [ Effect of alloying

[ Phonon spectra I l Defects/doping ]
l Molecular dynamics I

Lots of options, but calculations are computationally expensive




Machine learning, big data, and DFT

Calculations are expensive - want to avoid them!
/iy — machine learning — requires a lot of
calculations - ...

Step 1: get enough datal!

Materials genome initiative: “discover, manufacture, and
deploy advanced materials twice as fast, at a fraction of the
cost”

- calculational aspect: Materials Project: “high-throughput
calculations”; currently basic data for 124,515 inorganic
compounds

But: most calculations calculated using methods that are fast
(on a supercomputer), but not that accurate...



Machine learning, big data, and DFT

Step 2: how to use inaccurate data? Balance amount of calculations with accuracy

Funnel method:

Experimental gap (eV)

Computational
cost

Woods-Robinson et al., Chem. Mater. 30, 8375 (2018)

(computational cost)
Obtain criteria to filter calculations - need descriptors
1) Use physical intuition+knowledge of accuracy of

calculations: new transparent conducting oxide: band gap
needs to be large enough
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Machine learning, big data, and DFT

Alternative: Use small amount of accurate data + machine learning to find (unexpected) descriptors from

small training sets

1) create a large pool of possible descriptors by combining elementary physical properties of atoms or

easily calculated quantities

2) use compressed sensing to find best descriptor to distinguish metal/non-metal, crystal structure,

topological properties,...

3) once you have a
descriptor — use for other
materials to make predictions

Ouyang et al., Phys. Rev. Materials 2, 083802 (2018)
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Problem:

Compressed sensing

Signal processing technique: find solutions to underdetermined linear systems

Matrices:

A: (m by N) - measurement matrix
X: (N by 1) - actual signal
y: (m by 1) -» measurement vector

find x such that y=Ax with m<<N

— No unique solution
— hot possible to reconstruct x from the
m measurements y?



Compressed sensing

— Many signals have redundancy - sparse when represented in
some domain
A = |y E.g.: in reciprocal space

— use this to look for sparsest solution of system

Real space — Reciprocal space
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http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python Nelson et al., Phys. Rev. B 88, 155105 (2013)


http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python

Compressed sensing

3

y 1/
2ll, = (21 ” + |22l + -+ + |aa [P)

L, norm: vector length 1

— Many signals have redundancy - sparse when represented in
some domain

A = |y E.g.: in reciprocal space

— use this to look for sparsest solution of system

Minimize L1 norm

in £, norm Why L, norm? - Find sparse

min ¢ norm :
e solutions

Example: 10y + 7x = 20, find solution

L, norm: Manhattan
distance

http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python

i 3 with smallest norm

Example notebook:
gitlab.com/peelaers/machine-learning-talk

Nelson et al., Phys. Rev. B 88, 155105 (2013)


http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python

Compressed sensing
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Reconstruct image with only 1% of data!

http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python
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http://www.pyrunner.com/weblog/2016/05/26/compressed-sensing-python

Finding stable alloys

Alloying is a great tool to modify the properties of a material

Examples: stainless steel: iron, 11% chromium, max 1.2% carbon, some molybdenum,...

Semiconductors: change band gap, lattice constants,

band alignment discharge
e S
-

Battery electrodes: @ ©)
How do ions s L
intercalate in Srals . .
cathode/anode? discharge ;ﬂ;fﬁf? Calculational issue:

' Kezaiads
Are there low Ladatal : :
energy ordered '.s’r.fk“‘j Need to be able to describe disordered
structures? r’%’j systems and small alloy
What are the i il concentrations — requires large
thermodynamic % | l/ "iﬁf 3 simulation cells
pro pertieS? cathode Li* conducting anode

(LiCo0Oy,) electrolyte (graphite)



Cluster expansion

Possible solution: Use first-principles calculations in small simulation cells to construct a model of the alloy,
and use that!

But how to do so? n = _L: +EI

empty  1-body

Use an expansion (similar to Taylor series) . —9
] Ry, v
E(G’):Eg—{— E Hf(J)Jf 2-body
R —— — N S - A__r _ﬂ__r
f + !a + —?+ | +& + b...'
E: property of interest N E' E'v ﬁ ﬂ}
o: vector identifying alloy: decode all information as 3-body

pseudo-spins: n +m +E, . R ﬁ E ﬁ
if a position is occupied by atom A: +1, else O * : d th 7 i
— vector uniquely identifies alloy h e %

+ ..
f: sum over clusters

J: coefficients (unknown, but will fit from calculations)
[1: cluster basis function (accounting and symmetry)
Chang et al., J. Phys.: Condens. Matter 31, 325901 (2019)



Cluster expansion

f I in4-bodies
Big question: how to pick the clusters: 1000; o
*distance between elements (cluster radius) 100l triplets
*number of elements in cluster: when to truncate?
— combinatorics explode 10. Il pairs
And remember: each calculation we do is very time-consuming i
T 11 |
05 10 15 20 25 30

So how to select as few calculations as possible, while

. . . cluster radius
obtaining a good expansion?

Structure selection procedure

Possibilities include: lucky guesses, genetic algorithms,...

1. Generate a random vector m on the unit hyper-
sphere.

—_ = —
But a|SO CompreSS|Ve se nS|ng' HJ pr— E 2. Orthogonalize 7 to all rows of the current sensing

matrix IT.
3. Normalize 7

4. Find the nearest crystal structure to the orthonor-
malized 7.

5. Add the structure to the training set.

6. Update the matrix IT. Go back to step 1.
Nelson et al., Phys. Rev. B 88, 155105 (2013)




Cluster expansion

Random structures do not exploit sparseness and shape of cluster functions

_ ted [
1.0 -10 -05 00 05 1.0 -1.0 -05 00 05 1.0

-1.0 =05 0.0 05
Pairs: nearest-neighbor second-nearest third-nearest neighbors
Combine selection of new test calculations with Bayesian inference %8
But maintain sparsity by selecting the shape of the priors N 1(5)
05

Nelson et al., Phys. Rev. B 88, 155105 (2013)



Finding ground state structure of a material

Usually: we already know a lot of information: symmetry, stoichiometry, structure of chemical similar structures
(e.g., if we want to find the crystal structure of Ge, the known structure of Si would be a good guess)

—we can usually find ground state

But: if all this information is absent, the parameter space is huge! (and calculations are time-consuming)
(e.g., what structures are found at high pressure)

Lots of methods to avoid brute force: simulated annealing, genetic algorithms, particle swarm
optimalisations, Bayesian optimization,...

— machine learning can play an important role



Simulating kinetic processes

First-principles calculations: all at OK
How to introduce temperature: perturbation theory

But not sufficient to simulate a lot of processes, that require large number of atoms:
* how do Li-ions move between the layers of the electrode?

* how do liquids behave?

* how do materials melt?

* how are crystals grown?

* protein folding

— need to be able to do molecular dynamics: extremely expensive using first-principles

Possible solution: use limited first-principle calculations to obtain classical potentials, and use these potentials
to do the simulations

— use machine-learning to obtain these potentials



Conclusions

Incomplete overview of machine learning to augment first-principles calculations

Focused on compressive sensing
 Difference between L' and L2 norm

 Example: reconstructing a wave from rough sampling

Use of compressive sensing to find insights from limited amount of data

Cluster expansion as method to describe alloys/intercalation/...

* Role of compressive sensing

Structure minimization and dynamics

Machine learning has lots of potential to augment first-principles calculations!



Questions?



