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Two-photon events in CMS
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Computer vision for neutrino experiments 
ex: JINST 11 P09001, GoogleNet inspired architecture 
for neutrino events classification for NOvA 

  
Graph NN for reconstruction @ LHC 

ex: charged particle trajectories (HEP.TrkX project) 

example neutrino event  
image input

Recurrent NN for jet classification @ LHC 
ex: CMS-DP-2017-005, ATL-PHYS- PUB-2017-003, …  
exploit natural jet sequential clustering history

Image from B. Nachman

See Jean-Roch, Thomas, Georgia, Lindsey talks

JINST 11 P09001

HEP.TrkX
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Two-photon events in CMS

▸ At the same time, we must plan 
how we will overcome challenges 
in the next generation of 
experiments 

▸ ML may be a way out
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HL-LHC AND PILEUP 4

PILEUP IS THE GREATEST EXPERIMENTAL CHALLENGE GOING FORWARD,  
IT AFFECTS EVERYTHING. 

• detector design, object performance and physics sensitivity 
radiation damage to detectors, degrades energy/position measurements, lost untriggered events forever 

2016: <PU> ~ 20-50 
2017 + Run 3: <PU> ~ 50-80 

HL-LHC: 140-200

Multiple pp collisions in the same beam crossing 
To increase data rate, squeeze beams as much as possible

4CHALLENGE: PILEUP

▸ At high luminosity, many collisions happen simultaneously (pileup)! 

▸ Pileup makes our data more complex and noisy



5CHALLENGE: NEW DETECTORS 

▸ High Granularity Calorimeter will provide 3D information of a 
particle shower as it evolves

Jan 19, 2018CMS HGCal upgrade Huaqiao Zhang @ HKUST

The HGCal Geometries

11

• HGCal

§ Ecal + Hcal

• Ecal (CE-E)

§ 28 layers Si + W/Pb/Cu

§ 25 X0 & ~1.3l

• Hcal (CE-H)

§ 24 layers Si/Scintillator

+ Stainless Steel

§ ~8.5l

• Total Silicon:

§ 600 m2

• Total scintillator

§ 500 m2

• 6 M Channels

V

V



Arabella Martelli 19/05/17

the 3D imaging clustering
• Reconstruction: need to separate individual particles in high pile-up environment 
• Current algorithm: imaging-clustering*  

=> best suited for the high granularity offered by the HGCal 
- builds 2d-clusters (each layer)  

based on the energy-density  
of the cells (energy and distance) 

- associate 2d-clusters aligned  
along the shower axis  
over different layers 

• Extendable to more than two dimensions:  
- 3d spatial clustering already showed improvements => exploit full spatial correlation of the 

shower development 

• * inspired by: [A. Rodriguez, A. Laio, “Clustering by fast search and find of density peaks”,  
                                                                       Science 344 (6191), 1492-1496. (June 26, 2014)] 8

Status of EK+ HE Reco

Michalis Bachtis
(CERN-PH)

Upgrade TP meeting
On behalf of the GED working team 

26/11/14
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high pT jet 
O(500 GeV)

Tracks and clusters clearly
identifiable by eye throughout 

most of detector.

140PU

example of  
3d-cluster 
pattern recognition

example of  
2d-cluster 
topology
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CHALLENGE: BIG DATA



▸ HL-LHC will reach 1 exabyte of data per year

CHALLENGE: BIG DATA
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Figure 3: Diagrams for the gg → bb̄ subprocess.

factor 1/xi is included in the unintegrated gluon densities fg. As a result, in the calculation of

the hard matrix element, we shall write the polarization tensor corresponding to the incoming
active gluons, in the form

eµ1e
ν
2 ∝ T µν =

[(

Q−
p

2

)µ (

Q +
p

2

)ν]

t
. (16)

We are now ready to compute the cross sections for, first, the subprocess gg → bb̄+ g, and

then for gg → gg + g, in which a third jet, g, is emitted.

Note that, because of the gluon vertex factors (13,14), the integral (12) for the effective
luminosity Leff for gluon bremsstrahlung from the screening gluon is less sensitive to the infrared

region than the analogous integral (9) for the standard exclusive luminosity L in the non-
radiative case.

5 Exclusive bb̄ + g production

First, recall that the x axis is directed along the emitted gluon transverse momentum p⃗t and
note, that the component of the tensor T µν linear in Qy, that is Qypx − pxQy, vanishes for the

gg → bb̄ matrix element in the massless quark limit. Indeed, such a component corresponds to
the Jz = 0, octet state of the incoming gluons, for which the gg → bb̄ matrix element vanishes

in the massless quark limit, see footnote 5. Therefore, we need consider only the polarization
tensor

eµ1e
ν
2 ∝ T µν = (Q− p/2)x(Q + p/2)x +QyQy, (17)

where the indices xx and yy on the right-hand-side play the role of µν on the left-hand-side. The
contributions to the gg → bb̄ amplitude, corresponding to Fig. 3(a), contain ū(p1)e/νk/e/µv(p2),

where k is the t-channel quark momentum. The sum of the contributions with a longitudinal
component of k and the contribution of the diagram with s-channel gluon, Fig. 3(b), vanishes in

the massless quark limit, analogously to the Jz = 0 case. The T xx component gives γxk/tγx = q/
where q⃗ = k⃗x− k⃗y, that is qx = kx and qy = −ky. Similarly, the T yy component gives −q/. Thus,
when calculating the effective gg luminosity for octet qq̄ production we have to use

V8 ≡ V8q =
[(

Q−
p

2

)

x

(

Q +
p

2

)

x
−QyQy

]

, (18)

10

b
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BASICS OF DOUBLE-B TAGGING (RECAP) 10

PV
jet

SV2

IP2

charged  
lepton

displaced 
tracks

H(bb) jet

IP1

‣ Relative positions of SVs

b hadrons have long lifetimes:  
travel O(mm) before decay!

flight distance

‣ Handles:  
‣ secondary vertices 
‣ displaced tracks  
‣ large impact parameters 
‣ soft leptons



NEURAL NETWORK (RECAP) 11

ℓk
j = ϕ (∑i wijℓk−1

i + bj)▸ Classic fully connected  
architecture 

▸ Each input multiplied by a 
weight 

▸ Weighted values are 
summed, bias is added 

▸ Nonlinear activation 
function is applied 

▸ Trained by varying the 
parameters to  
minimize a loss  
function (quantifies  
how many mistakes  
the network makes)

ℓk−1
i

wij ℓk
j

A sufficiently “wide” neural network  
can approximate any function!
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BASICS OF DEEP LEARNING 12

‣ Step 0: Define the problem (choice of loss function)  
 
 
 

‣ Step 1: Acquire lots of labeled data and split into training 
and testing sets

‣ Step 2: Select input features
‣ Step 3: Explore/train different neural network 

architectures
‣ Step 4: Evaluate performance

L = −y log(p) + (1−y)log(1−p)

y = 0 (background) or 1 (signal) 
p = output of our NN (probability of signal)

if p ~ y,     L ~ 0 (correct!)  
if p ~ 1-y, L ~ ∞ (incorrect!)



CMS OPEN H(BB) DATASET 13

‣ Derived datasets (ROOT & HDF5):  
http://opendata-dev.web.cern.ch/record/12102 

‣ 182 files, 245 GB, 18 million total entries (jets) 
‣ event features, e.g. MET, ρ (average density) 
‣ jet features, e.g. mass, pT, N-subjettiness variables 
‣ particle candidate features, e.g. pT, η, ϕ (for up to 100 particles) 
‣ charged particle / track features, e.g. impact parameter (for up to 60 tracks) 
‣ secondary vertex features, e.g. flight distance (for up to 5 vertices)

http://opendata-dev.web.cern.ch/record/12102


https://github.com/cernopendata-datascience/HiggsToBBMachineLearning

DEMO: SIMPLE NEURAL NETWORK TRAINING 14

_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
input (InputLayer)           (None, 27)                0          
_________________________________________________________________ 
bn_1 (BatchNormalization)    (None, 27)                108        
_________________________________________________________________ 
dense_1 (Dense)              (None, 64)                1792       
_________________________________________________________________ 
dense_2 (Dense)              (None, 32)                2080       
_________________________________________________________________ 
dense_3 (Dense)              (None, 32)                1056       
_________________________________________________________________ 
output (Dense)               (None, 2)                 66         
================================================================= 
Total params: 5,102 
Trainable params: 5,048 
Non-trainable params: 54 
_________________________________________________________________

‣ Train fully connected neural network with high level 
features in ~30 lines of code

https://github.com/cernopendata-datascience/HiggsToBBMachineLearning
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secondary  
vertex 
inputs

Conv1D 
(2 layers,  

32+32 units,  
dropout = 0.1)

Conv1D 
(2 layers,  

32+32 units,  
dropout = 0.1)

track 
inputs

GRU  
(50 units, 

dropout = 0.1)

GRU  
(50 units, 

dropout = 0.1)

expert  
inputs

Fully 
connected 

 
(1 layer,  

100 units,  
dropout = 0.1)

(60, 32)

(5, 32)

(60, 8)

(5, 2)

(27)

(50)

(50)

Output  
 

H(bb) 
QCD

(100)

‣ Process low-level track and SV inputs as ordered lists
‣ Convolutional NN layers: share parameters across inputs, …  
‣ Recurrent NN layers: performs dimensional reduction, … 

‣ Combine in final layer with expert inputs
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‣ An unintended consequence: network “learns” the jet mass
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‣ How can we quantify the mass sculpting? 

‣ Kullback-Liebler divergence

‣ How can we mitigate the mass sculpting?

‣ Add it to the loss function as a “penalty”

L = Ldisc + λDKL
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‣ Penalty term mitigates the mass sculpting 
‣ Small trade-off with performance

tighter cuts 
on discriminator

https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTV13TeVDDBDDC


CAN WE DO EVEN BETTER?



CAN WE DO EVEN BETTER?

‣ Ordered lists of particles not the most natural representation of a jet 
‣ What if we consider each jet as a graph of interconnected particles?

http://arxiv.org/abs/1612.0222
http://arXiv.org/abs/1704.01212
http://arxiv.org/abs/1801.07829
http://arxiv.org/abs/1903.0242


CAN WE DO EVEN BETTER?

‣ Ordered lists of particles not the most natural representation of a jet 
‣ What if we consider each jet as a graph of interconnected particles?

‣ Geometric deep learning (a.k.a graph neural networks, interaction 
networks, message-passing neural networks) is the extension of deep 
learning to deal with data structured as a graph or on a manifold 
‣ See Interaction Networks for Learning about Objects, Relations, and 

Physics [arXiv:1612.0222], Neural Message Passing for Quantum 
Chemistry [arXiv:1704.01212], Dynamic Graph CNN for Learning 
on Point Clouds [arXiv:1801.07829], Fast Graph Representation 
Learning with PyTorch Geometric [arXiv:1903.0242]

http://arxiv.org/abs/1612.0222
http://arXiv.org/abs/1704.01212
http://arxiv.org/abs/1801.07829
http://arxiv.org/abs/1903.0242
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‣ A graph of objects and their connections is defined
‣ NN is evaluated on pairs of connected objects to 

produce a message
‣ Messages are communicated from nearest neighbors 

(and summed*) to update each object's hidden state
‣ A single output is computed based on the summed* 

hidden states of all objects in the graph
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.
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the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.
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the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.
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the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.
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the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.
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thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology
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connectivity in addition to the weights — this parallels the human brain development [109] [110],
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VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology
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~75-85% signal eff.  
@ 1% mistag. rate

‣ Performance gain 
‣ GNNs have many other 

applications in HEP 
‣ tracking [arXiv:

1810.06111] 
‣ clustering [arXiv:

1902.07987] 
‣ detector linking (i.e. 

particle flow) 
‣ exotic particle tagging 
‣ anomaly detection 
‣ detector simulation
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input per event:
set of elements !={ECAL, HCAL, TRK,...}
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output per event:
set of candidates !={PFCand,...}

~O(2500)

PFCand

PF blocks

7

output per event:
set of candidates !={PFCand,...}

blocks

~O(5000) ~O(2500)

~O(2000)

PFCand

block: candidate associated to elements 
A few elements → a few candidates

ECAL
HCAL

TRK
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▸ Look for new heavy particle decaying 
to two (wide) jets 

▸ Compute invariant mass of two 
high-pT (wide) jets 

▸ Look for a bump (indicating a new 
resonance) over a smoothly falling 
background 

▸ Problems 

▸ Very large background 

▸ Many signal models; should we 
create an ML algorithm to identify 
each one? 

▸ Can we use unsupervised methods 
for model-agnostic new physics 
searches?

TYPICAL DIJET SEARCH 28

13

Signals and backgrounds with jets
Main challenge for jet searches: large backgrounds

Mass of di-jet system 
(~new particle mass)

Number of events 
produced by the LHC

Background

Signal

Introduction Monitoring and calibration Delayed reconstruction Real-time analysis
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Z
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q

q

q
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▸ Map an input onto itself passing 
through a latent representation 

▸ Unsupervised algorithm, used 
for data compression, 
generation, clustering, etc. 

▸ Anomaly: any event whose 
output is “far” from the input

AUTO ENCODERS IN ONE SLIDE 29

See: O. Cerri Lepton Photon 2019, K. 
Wozniak CHEP 2019 

https://indico.cern.ch/event/688643/contributions/3466190
https://indico.cern.ch/event/773049/contributions/3473202/
https://indico.cern.ch/event/773049/contributions/3473202/
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Problem Statement Solution Approach Results

VAE FOR JET IMAGES

Dataset:

I 10 fb�1 of QCD simulation

I Pythia + Delphes

I Clustered particle-flow Jets (=2)
with anti-kt (R=0.8)

I ! Set of Dijet events

Set of constituents in each jet

I Momentum & 2 angles

I ! transform to angle-binned
pT-image

! Train on Set of QCD Images

bin i

bin j

De Oliveira et al.: arXiv:1511.05190 (Jet images)

‣ Dataset:  
‣ QCD dijet simulation 

(Pythia + Delphes) 
‣ Input: 
‣ anti-kT R=0.8 jets 
‣ transformed to  

binned, pT-weighted  
jet images 

‣ Training in control region:  
1.4 < |∆η| < 2.4  

‣ Application in signal 
region: |∆η| < 1.4
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‣ Cut on the loss to keep 1% of background events 
‣ Use untagged events to constrain background shape in 
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‣ Note background mjj distribution is not preserved after 
applying selection on loss (sculpting!) 

‣ But we can apply a mjj dependent  
threshold on the loss  to preserve  
shape of background
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Problem Statement Solution Approach Results

VAE TO BOOST SUPERVISED SEARCHES ON TAILS

Select events

8
>>>><

>>>>:

Dijets pT>40 GeV

|⌘| < 2.4

mJJ>1100 GeV

CMS analysis for selection:
arXiv:1806.00843

I Train VAE on data sideband: |�⌘| � 1.4

I Apply VAE to signal region: |�⌘| < 1.4

I Select events with Loss > threshold
s.t. some fraction of events (here 1%) is
kept

L > LT

I PROS: enhance SIG (here: GRS ! t̄t broad with xsec 10 pb)

I CONS: shape the BG, in a way that could be dangerous for a signal
in that mass range

I Can still run bump hunt if ’excess’ is not on bulk of the distribution
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Problem Statement Solution Approach Results

VAE TO BOOST SUPERVISED SEARCHES ON BULK

Select events

8
>>>><

>>>>:

Dijets pT>40 GeV

|⌘|<2.4

mJJ>1100GeV

Ref: CMS analysis for selection

I Train VAE on data sideband: |�⌘| � 1.4.

I Apply VAE to signal region: |�⌘| < 1.4

I Select events with MJJ dependent cut (
quantile regression keeping 1% of events)

I PROS: keeps background unbiased
I CONS: reshape the signal here: GRS ! WW with xsec 40 pb) in

unfavourable way (penalise tail)
I Can still run a bump hunt if core of the distribution

background
signal 
GRS→WW
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‣ Comparison between standard 
dijet search and VAE-assisted 
search 

‣ Sensitivity boosted from 3σ to 
4σ 

‣ Can we apply this technique in 
the “trigger” algorithm in 
hardware?

RESULTS 36
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Problem Statement Solution Approach Results

VAE TO BOOST SUPERVISED SEARCHES ON BULK

I Consider RS Graviton ! WW
with 1.5 TeV mass Data cocktail
(pythia simulation of QCD + GRS

at different cross sections)
I Traditional approach: Bump

hunt
I VAE-boosted approach:

Bump hunt after VAE loss
cut

I NOTE: here running simple
template fit, assuming (for both)
that we know BG shape !
overestimated significance but
comparison meaningful
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▸ Level-1 Trigger: 
40 MHz → 750 kHz

▸ Reconstruct and filter  
2% of events in ~12 μs 
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▸ Level-1 Trigger: 
40 MHz → 750 kHz

▸ Reconstruct and filter  
2% of events in ~12 μs 

▸ Latency necessitates all 
FPGA design
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O(50-100) optical 
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running at  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‣ Pros: reprogrammable, 
high throughput, 
massively parallel, & low 
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‣ Con: requires domain 
knowledge to program
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`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

activation function

multiplication

addition

Maps nicely onto FPGA 
resources: high IO, 

DSPs, LUTs, etc.
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FPGA

How many resources? 
Can we fit in the latency requirements?

= 4,256  
multiplications

+5×32

+32×32

+64×3216×64
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Further reading: arXiv:1510.00149

https://arxiv.org/abs/1510.00149
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1. Compression 
‣ Maintain high performance while removing redundant 

synapses and neurons  

Further reading: arXiv:1510.00149
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

https://arxiv.org/abs/1510.00149
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1. Compression 
‣ Maintain high performance while removing redundant 

synapses and neurons  

2. Quantization 
‣ Reduce precision from 32-bit floating point to 20-bit, 8-bit, …

Further reading: arXiv:1510.00149
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Top-5 accuracy on Imagenet.
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energy efficiency improvements of the pruned model when run on commodity hardware.
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Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

https://arxiv.org/abs/1510.00149
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1. Compression 
‣ Maintain high performance while removing redundant 

synapses and neurons  

2. Quantization 
‣ Reduce precision from 32-bit floating point to 20-bit, 8-bit, …

3. Parallelization/Reuse 
‣ Balance parallelization (how fast) with resources needed  

(how costly)
Further reading: arXiv:1510.00149
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.
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Max DSP

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018
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‣ Big reduction in DSPs (multipliers) with compression
‣ Easily fits on 1 FPGA after compression
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muon

‣ Inference of ML algorithms possible in O(100 ns) on 1 FPGA with 
hls4ml!
‣ Applications across CMS, ATLAS, DUNE, and accelerator controls
‣ E.g. muon pT determination in the CMS endcap with a DNN:  

runs in 160 ns on an FPGA and reduces the fake muon rate by  
up to 80% 

‣ Currently supported: 
‣ Small and large dense NNs 
‣ Bernary and ternary NNs 
‣ Small 1D/2D CNNs 

‣ Planned support 
‣ Big 1D/2D CNNs 
‣ Graph NNs 
‣ Other HLS/RTL backends
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▸ Deep learning algorithms have proven to be better than 
traditional algorithms in HEP for Higgs tagging and much 
more

▸ Graph neural networks are well suited to many HEP tasks

▸ Unsupervised methods may help us discover “unexpected” 
new physics

▸ With FPGAs, ML methods can be implemented quickly and 
efficiently
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No big gain in performance…

WHY? 

(1) MAYBE WE NEED A BIGGER NETWORK, MORE DATA, 
MORE TRAINING TIME, … 

OR  

(2) MAYBE WE NEED A SMARTER NETWORK
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‣ Increasing reuse factor, decreases resources

5000 DSPs (90%)

800 DSPs (15%)
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‣ Scan the bit width 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Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018
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More and better information available in the Level-1 trigger!                                    What can we do with it?
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‣ 16 expert observables provide separation between top, W/Z, 
and quark/gluon 

mass

ECFs

multiplicity

Observables

mmMDT

N�=1,2
2

M�=1,2
2

C�=0,1,2
1

C�=1,2
2

D�=1,2
2

D(↵,�)=(1,1),(1,2)
2Õ

z log z
Multiplicity

Table 1: A summary of the observables used in the analysis.

this study [51–54]. A brief description of each of these variables is presented in Ref. [55]. These are
used as expert-level inputs to a neural network classifier which is near optimal3.

Benchmark networks and floating point performance

We train a neural network for the classification task of q, g, W , Z , and t discrimination. The data are
randomly split into training (60%), validation (20%), and testing (20%) datasets. The input features
are standardized by removing the mean and scaling to unit variance. The architecture, illustrated in
Fig. 4 (left), is a fully-connected neural network with three hidden layers. The activation function
for the hidden layers is ReLU [56] while the output layer activation function is a softmax function to
provide probabilities for each class. The categorical cross-entropy loss function is minimized with
and without L1 regularization of the weights (Sec. 2.3) using the Adam algorithm [57] with an initial
learning rate of 10�4 and a minibatch size of 1024. The learning rate is halved if the validation loss
fails to improve over 10 epochs. Training is performed on an AWS EC2 P2 GPU instance [58] with
Keras [10]. We also consider a simpler architecture with one hidden layer, see Fig. 4 (right), when
studying the final FPGA implementation on a specific device. This is described further in Sec. 3.3.

The performance of the neural network classifier is shown in Fig. 5. The general features of this
performance plot are typical of jet substructure classification tasks. Top-quark jets, by virtue of their
large mass and three-prong nature, have the best separation from the rest of the jet types. The W and
Z jets are similar in performance because of their masses and two-prong nature while quark and gluon
jets are notoriously challenging to classify. Given this multi-jet classifier performance, we explore
how to implement such a neural network architecture in an FPGA using hls4ml.

3More sophisticated approaches exist, but the goal of this study is not to achieve better performance than existing
algorithms. Instead, the goal is to examine the implementation of several e�ective neural network architectures in FPGAs.

– 8 –
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… …

▸ You have a task to 
accomplish, which can be 
represented as a smooth 
function from your inputs to 
the answer you want

▸ Train an algorithm to learn 
an approximation of the 
optimal solution function  
(Machine Learning)

▸ NNs are the best ML solution 
on the market today

▸ Each node performs a 
math operation on the 
input

▸ Edges represent the flow 
of nodes’ inputs & outputs
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A sufficiently “wide” neural network  
can approximate any function!



TRAINING 60



TRAINING 60

▸ A network is trained by 
specifying inputs, targets,  
and a loss function

▸ Target is what the network 
should learn for that input, 
can be a “truth” label 
(supervised) or the input 
itself (unsupervised)

▸ Loss function quantifies 
how many mistakes the 
network makes

▸ Training is the minimization 
of the loss function by 
varying the network 
parameters



TRAINING 60

▸ A network is trained by 
specifying inputs, targets,  
and a loss function

▸ Target is what the network 
should learn for that input, 
can be a “truth” label 
(supervised) or the input 
itself (unsupervised)

▸ Loss function quantifies 
how many mistakes the 
network makes

▸ Training is the minimization 
of the loss function by 
varying the network 
parameters



82

SV
s 

/ 0
.4

 u
ni

ts

210

310

410

Data
udsg
c
c from gluon splitting
b
b from gluon splitting

CMS

Double-muon-tagged AK8 jets
Muon-enriched multijet sample

 (AK8 jets) > 250 GeV
T

p

 (13 TeV, 2016)-135.9 fb

 2D flight distance significance0SV
0 2 4 6 8 10 12 14 16 18 20D

at
a/

M
C

0.5

1

1.5

SV
s 

/ 1
 G

eV

210

310

410

510

610
Data
udsg
c
c from gluon splitting
b
b from gluon splitting

CMS

Double-muon-tagged AK8 jets
Muon-enriched multijet sample

 (AK8 jets) > 250 GeV
T

p

 (13 TeV, 2016)-135.9 fb

 mass [GeV]1SV
0 2 4 6 8 10 12 14 16 18 20D

at
a/

M
C

0.5

1

1.5

Je
ts

 / 
1.

3 
un

its

1

10

210

310

410

510

610 Data
udsg
c
c from gluon splitting
b
b from gluon splitting

CMS

Double-muon-tagged AK8 jets
Muon-enriched multijet sample

 (AK8 jets) > 250 GeV
T

p

 (13 TeV, 2016)-135.9 fb

z variable
0 10 20 30 40 50 60D

at
a/

M
C

0.5

1

1.5

Je
ts

 / 
0.

04
 u

ni
ts

210

310

410

510

610
Data
udsg
c
c from gluon splitting
b
b from gluon splitting

CMS

Double-muon-tagged AK8 jets
Muon-enriched multijet sample

 (AK8 jets) > 250 GeV
T

p

 (13 TeV, 2016)-135.9 fb

Double-b discriminator
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1D

at
a/

M
C

0.5

1

1.5

Figure 55: Distribution of the 2D flight distance significance of the secondary vertex associated
with the first t axis (upper left), the mass of the secondary vertex associated with the second
t axis (upper right), the z variable (lower left), and the double-b discriminator (lower right)
for double-muon-tagged AK8 jets with pT > 250 GeV. The simulated contributions of each
jet flavour are shown with a different colour. The total number of entries in the simulation is
normalized to the number of observed entries in data. The first and last bin of the upper and
lower right histograms contain the underflow and overflow entries, respectively.

Caterina Vernieri (FNAL)

Efficiency measurement in data

24

• Since there is no H/Z(bb̄) signal (yet!) we use: 
•  g(bb̄) jets as a proxy to measure the signal efficiency  
• Jet selection has been designed to ensure jets are signal-like 
• High AK8 pT jet (pT > 250 GeV) 
• double-muon tagged jets (muon with pT > 7 GeV)  
• mass cut (>50 GeV)

µµ

Z(bb̄) by the end of the talk 

EFFICIENCY IN DATA 61

‣ Using g→bb jets as a proxy in double muon tagged jet 
sample 

‣ Associated data/MC uncertainty 3-5%



DOUBLE-B TAGGER INPUTS 62

36

 of first track above b thresholdσ2D IP/
0 5 10 15 20

Je
ts

 / 
0.

2 
un

its

4−10

3−10

2−10

1−10

1

10

210 b b→H 
b b→Multijet, g 

Multijet, single b
Multijet, udsg

AK8 jet
 > 300 GeV

T
p
50 < m < 200 GeV

13 TeV, 2016

CMS
Simulation

Number of SVs
0 1 2 3 4 5 6 7 8 9

Je
ts

 / 
1 

un
it

4−10

3−10

2−10

1−10

1

10

210

310 b b→H 
b b→Multijet, g 

Multijet, single b
Multijet, udsg

AK8 jet
 > 300 GeV

T
p
50 < m < 200 GeV

13 TeV, 2016

CMS
Simulation

 energy ratio0SV
0 0.5 1 1.5 2 2.5 3 3.5 4

Je
ts

 / 
0.

04
 u

ni
ts

4−10

3−10

2−10

1−10

1

10

210 b b→H 
b b→Multijet, g 

Multijet, single b
Multijet, udsg

AK8 jet
 > 300 GeV

T
p
50 < m < 200 GeV

13 TeV, 2016

CMS
Simulation

z variable
0 5 10 15 20 25 30 35 40

Je
ts

 / 
0.

4 
un

its

4−10

3−10

2−10

1−10

1

10

210 b b→H 
b b→Multijet, g 

Multijet, single b
Multijet, udsg

AK8 jet
 > 300 GeV

T
p
50 < m < 200 GeV

13 TeV, 2016

CMS
Simulation

Figure 24: Distribution of 2D impact parameter significance for the most displaced track rais-
ing the mass above the b hadron mass threshold as described in the text (upper left), number
of secondary vertices associated with the AK8 jet (upper right), vertex energy ratio for the
secondary vertex with the smallest 3D flight distance uncertainty (lower left), and z variable
described in the text (lower right). Comparison between H ! bb jets from simulated samples
of a Kaluza–Klein graviton decaying to two Higgs bosons, and jets in an inclusive multijet sam-
ple containing zero, one, or two b quarks. The AK8 jets are selected with pT > 300 GeV and
pruned jet mass between 50 and 200 GeV. The distributions are normalized to unit area. The
last bin includes the overflow entries.

5.1 Discriminating variables 5

subjets fatjet double-b

τ-axis1

τ-axis2

Figure 1: Schematic comparison of the fat jet and subjet b tagging approaches and the presented
double-b tagger.

5.1 Discriminating variables

We present here the discriminating variables that are used as input to the MVA algorithm to
distinguish between the signal H! bb jets and the background from inclusive QCD jets. The
variables rely on reconstructed tracks, secondary vertices (SV) as well as the two-SV system.
Since the angular separation between the decay products of a resonance depend on the mo-
mentum and the mass of the resonance, in order to keep the algoritm as general as possible,
one of the guiding principle in the selection of input variables is that the variables do not have
strong dependence on the jet pT and the jet mass.

Tracks with pT > 1 GeV are associated to jets in a cone DR <0.8 around the jet axis, where
the jet axis is defined by the primary vertex and the direction of the jet momentum. Then we
associate each track to the closest t-axis. The distance of a track to the t-axis is defined as the
distance of closest approach of the track to the axis. In order to reject tracks from pileup this
quantity is required to be less than 700 µm. The point on the track that is closest to the t-axis
must be within 5 cm of the primary vertex. The contamination from decay products of long-
lived particles, e.g. neutral kaons, is reduced by removing pairs of tracks compatible with the
kaon masses within 30 MeV. The impact parameter, IP, of a track with respect to the primary
vertex is used to distinguish the decay products of a b hadron from prompt tracks. The IP is
calculated in three dimensions and the impact parameter significance, SIP, is defined as the
ratio of the IP to its estimated uncertainty. Several input variables related to the presence and
properties of secondary vertices coming from b hadron decay have been investigated. Using
tracks with pT > 0.8 GeV, secondary vertices are identified through the Inclusive Vertex Finder
(IVF) [4, 10] algorithm. This algorithm is not seeded from tracks associated to the reconstructed
jets, but it uses as input the collection of reconstructed tracks in the event. The reconstructed
secondary vertices are associated to jets in a cone DR <0.7 and then to the closest t-axis within
that jet. For each t-axis, track momenta of the constituent tracks from all the SVs associated to
a given t-axis are added to compute the SV mass and the SV transverse momentum for that
t-axis.

The input variables to the double-b tagger MVA discriminant are:

• The first four SIP values for selected tracks ordered in decreasing SIP;
• For each t-axis we consider the first two SIP values for their respective associated
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tracks ordered in decreasing SIP, to further discriminate against single b quark and
light flavor jets from QCD when one or both SV are not reconstructed due to IVF
inefficiencies;

• The measured IP significance in the plane transverse to the beam axis, 2D SIP, of
the first two tracks (first track) that raises the SV invariant mass above the bottom
(charm) threshold of 5.2 (1.5) GeV;

• The number of SV associated to the jet;
• The significance of the 2D distance between the primary vertex and the secondary

vertex, flight distance, for the SV with the smallest 3D flight distance uncertainty, for
each of the two t-axes;

• The DR between the SVs with the smallest 3D flight distance uncertainty and its
t-axis, for each of the two t-axes;

• The relative pseudorapidity, hrel, of the tracks from all SVs with respect to their t-
axis for the three leading tracks ordered in increasing hrel, for each of the two t-axes;

• The total SV mass, defined as the total mass of all SVs associated to a given t-axis,
for each of the two t-axes;

• The ratio of the total SV energy, defined as the total energy of all SVs associated to
a given t-axis, and the total energy of all the tracks associated to the fat jet that are
consistent with the primary vertex, for each of the two t-axes;

• The information related to the two-SV system, the z variable, defined as:

z = DR(SV0, SV1) ·
pT,SV1

m(SV0, SV1)
(2)

where SV0 and SV1 are SVs with the smallest 3D flight distance uncertainty. The z

variable helps rejecting the bb background from gluon splitting relying on the dif-
ferent kinematic properties compared to the bb pair from the decay of a massive
resonance.

We select as discriminating variables all those with enough classifier separation (a default out-
put of TMVA), that show small correlation with the other inputs and improve the QCD back-
ground discrimination by at least 5%. In total 27 variables are used as input to the multivariate
discriminant. The most discriminating variables are the SIP for the most displaced tracks, the
vertex energy ratio for SV0, and the 2D SIP for the first track above bottom threshold. In Fig. 2
distributions for some discriminating input variables are shown for the signal H! bb jets and
the background QCD jets. In particular g ! bb and single b quark production are shown sep-
arately as well as light flavor jet contribution. The secondary vertex multiplicity and the vertex
energy ratio for SV0, along with SIP of the first track above bottom threshold show a good sep-
aration between the H! bb jets and different QCD jet components. The z variable shows good
discrimination against the g ! bb contribution.

Several variables related to the presence and properties of soft leptons arising from the b hadron
decay have also been investigated. Despite a small gain in performance, the soft lepton vari-
ables were excluded from the final list of input variables since they could introduce undesired
biases in the performance measurement in data where µ-tagged jets from QCD multijets events
are used.
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2.4.2 AK8 input features160

The input features used by AK8 tagging are similar to those used in the AK4 DeepFlavour161

tagger. They are organized into three groups: inclusive (charged and neutral) PF candidates,162

charged PF candidates, and secondary vertices. We take up to 100 inclusive PF candidates,163

sorted in descending pT order, and up to 60 charged PF candidates and up to 5 secondary164

vertices, ordered by impact parameter significance. The full lists of variables used in each165

group are summarized in Table 10 to 12.166

Table 10: Full list of charged PF candidate features used as input to the DeepAK8 network
feature comment
trackEtaRel BTV
trackPtRatio BTV
trackPParRatio BTV
trackSip2dVal BTV
trackSip2dSig BTV
trackSip3dVal BTV
trackSip3dSig BTV
trackJetDistVal BTV
pT(cPF)/pT(j)
Erel(cPF)
Df(cPF, j)
Dh(cPF, j)
DR(cPF, j)
DRm(cPF, SV)
DR(cPF, subjet 1)
DR(cPF, subjet 2)
c2

n

quality
dz

Sz

dxy

Sxy

track dptdpt track covariance
track detadeta track covariance
track dphidphi track covariance
track dxydxy track covariance
track dzdz track covariance
track dxydz track covariance
track dphidxy track covariance
track dlambdadz track covariance

3 Deep neural network architectures167

The neural network structure was designed to be able to make good use of the large input we168

give to the neural network. In contrast to previous proposals we use more information per169

particles candidate or vertex. This lead to the special challenge to digest the huge amount of170

input features. In order to not expose the later layer to such a huge amount of features we171

build a reduced set features per particle (or per few particles) candidate or vertex by so called172
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Table 11: Full list of inclusive PF candidate features used as input to the DeepAK8 network
feature
pT(PF)/pT(j)
Erel(PF)
Df(PF, j)
Dh(PF, j)
DR(PF, j)
DRm(PF, SV)
DR(PF, subjet 1)
DR(PF, subjet 2)
wp(PF)
fHCAL

Table 12: Full list of secondary vertex features used as input to the DeepAK8 network
feature
pT(SV)/pT(j)
Erel(SV)
Df(SV, j)
Dh(SV, j)
DR(SV, j)
pT(SV)
mSV

Ntracks(SV)
c2

n(SV)
dxy(SV)
Sxy(SV)
d3D(SV)
S3D(SV)
cos q(SV)
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feature
pT(PF)/pT(j)
Erel(PF)
Df(PF, j)
Dh(PF, j)
DR(PF, j)
DRm(PF, SV)
DR(PF, subjet 1)
DR(PF, subjet 2)
wp(PF)
fHCAL

Table 12: Full list of secondary vertex features used as input to the DeepAK8 network
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