
DEEP LEARNING AT THE LHC

JAVIER DUARTE
NOVEMBER 12, 2019
UNIVERSITY OF KANSAS 

1

THE LARGE HADRON COLLIDER 2

THE LARGE HADRON COLLIDER 2

proton-proton collider @ 13 TeV center-of-mass energy
p p

THE LARGE HADRON COLLIDER 2

proton-proton collider @ 13 TeV center-of-mass energy
4 interaction points

p p

THE LARGE HADRON COLLIDER 2

proton-proton collider @ 13 TeV center-of-mass energy
4 interaction points

40 million collisions / second

p p

~10 cm

THE LARGE HADRON COLLIDER 2

proton-proton collider @ 13 TeV center-of-mass energy
4 interaction points

40 million collisions / second
trigger selects ~1000 collisions / second

p p

~10 cm

THE LARGE HADRON COLLIDER 2

proton-proton collider @ 13 TeV center-of-mass energy
4 interaction points

40 million collisions / second
trigger selects ~1000 collisions / second

p p

CMS

~10 cm

 (GeV)γγm
110 120 130 140 150S

/(S
+B

) W
ei

gh
te

d
E

ve
nt

s
/ 1

.5
 G

eV

0

500

1000

1500

Data
S+B Fit
B Fit Component

σ1±
σ2±

-1 = 8 TeV, L = 5.3 fbs-1 = 7 TeV, L = 5.1 fbsCMS

 (GeV)γγm
120 130

E
ve

nt
s

/ 1
.5

 G
eV

1000

1500
Unweighted

HIGH ENERGY PHYSICS + MACHINE LEARNING 3

Two-photon events in CMS

 (GeV)γγm
110 120 130 140 150S

/(S
+B

) W
ei

gh
te

d
E

ve
nt

s
/ 1

.5
 G

eV

0

500

1000

1500

Data
S+B Fit
B Fit Component

σ1±
σ2±

-1 = 8 TeV, L = 5.3 fbs-1 = 7 TeV, L = 5.1 fbsCMS

 (GeV)γγm
120 130

E
ve

nt
s

/ 1
.5

 G
eV

1000

1500
Unweighted

▸ Machine learning was vital to make  
big discoveries like the Higgs boson  
on July 4, 2012

HIGH ENERGY PHYSICS + MACHINE LEARNING 3

Two-photon events in CMS

 (GeV)γγm
110 120 130 140 150S

/(S
+B

) W
ei

gh
te

d
E

ve
nt

s
/ 1

.5
 G

eV

0

500

1000

1500

Data
S+B Fit
B Fit Component

σ1±
σ2±

-1 = 8 TeV, L = 5.3 fbs-1 = 7 TeV, L = 5.1 fbsCMS

 (GeV)γγm
120 130

E
ve

nt
s

/ 1
.5

 G
eV

1000

1500
Unweighted

▸ Machine learning was vital to make  
big discoveries like the Higgs boson  
on July 4, 2012

▸ Today, ML is enabling new  
detection techniques,  
measurements, and searches

HIGH ENERGY PHYSICS + MACHINE LEARNING 3

Two-photon events in CMS

0 20 40 60 80

0

10

20

30

40

50

60

70

Top View
⌫µ CC Event

0 20 40 60 80

0

10

20

30

40

50

60

70

Side View
⌫µ CC Event

0

20

40

60

80

100

0

20

40

60

80

100

NOvADeep learning in HEP

�5

Computer vision for neutrino experiments
ex: JINST 11 P09001, GoogleNet inspired architecture
for neutrino events classification for NOvA

Graph NN for reconstruction @ LHC

ex: charged particle trajectories (HEP.TrkX project)

example neutrino event  
image input

Recurrent NN for jet classification @ LHC
ex: CMS-DP-2017-005, ATL-PHYS- PUB-2017-003, …  
exploit natural jet sequential clustering history

Image from B. Nachman

See Jean-Roch, Thomas, Georgia, Lindsey talks

JINST 11 P09001

HEP.TrkX

 (GeV)γγm
110 120 130 140 150S

/(S
+B

) W
ei

gh
te

d
E

ve
nt

s
/ 1

.5
 G

eV

0

500

1000

1500

Data
S+B Fit
B Fit Component

σ1±
σ2±

-1 = 8 TeV, L = 5.3 fbs-1 = 7 TeV, L = 5.1 fbsCMS

 (GeV)γγm
120 130

E
ve

nt
s

/ 1
.5

 G
eV

1000

1500
Unweighted

▸ Machine learning was vital to make  
big discoveries like the Higgs boson  
on July 4, 2012

▸ Today, ML is enabling new  
detection techniques,  
measurements, and searches

HIGH ENERGY PHYSICS + MACHINE LEARNING 3

Two-photon events in CMS

▸ At the same time, we must plan
how we will overcome challenges
in the next generation of
experiments

▸ ML may be a way out

0 20 40 60 80

0

10

20

30

40

50

60

70

Top View
⌫µ CC Event

0 20 40 60 80

0

10

20

30

40

50

60

70

Side View
⌫µ CC Event

0

20

40

60

80

100

0

20

40

60

80

100

NOvADeep learning in HEP

�5

Computer vision for neutrino experiments
ex: JINST 11 P09001, GoogleNet inspired architecture
for neutrino events classification for NOvA

Graph NN for reconstruction @ LHC

ex: charged particle trajectories (HEP.TrkX project)

example neutrino event  
image input

Recurrent NN for jet classification @ LHC
ex: CMS-DP-2017-005, ATL-PHYS- PUB-2017-003, …  
exploit natural jet sequential clustering history

Image from B. Nachman

See Jean-Roch, Thomas, Georgia, Lindsey talks

JINST 11 P09001

HEP.TrkX

HL-LHC AND PILEUP 4

PILEUP IS THE GREATEST EXPERIMENTAL CHALLENGE GOING FORWARD,
IT AFFECTS EVERYTHING.

• detector design, object performance and physics sensitivity
radiation damage to detectors, degrades energy/position measurements, lost untriggered events forever

2016: <PU> ~ 20-50
2017 + Run 3: <PU> ~ 50-80

HL-LHC: 140-200

Multiple pp collisions in the same beam crossing
To increase data rate, squeeze beams as much as possible

4CHALLENGE: PILEUP

▸ At high luminosity, many collisions happen simultaneously (pileup)!

▸ Pileup makes our data more complex and noisy

5CHALLENGE: NEW DETECTORS

▸ High Granularity Calorimeter will provide 3D information of a
particle shower as it evolves

Jan 19, 2018CMS HGCal upgrade Huaqiao Zhang @ HKUST

The HGCal Geometries

11

• HGCal

§ Ecal + Hcal

• Ecal (CE-E)

§ 28 layers Si + W/Pb/Cu

§ 25 X0 & ~1.3l

• Hcal (CE-H)

§ 24 layers Si/Scintillator

+ Stainless Steel

§ ~8.5l

• Total Silicon:

§ 600 m2

• Total scintillator

§ 500 m2

• 6 M Channels

V

V

Arabella Martelli 19/05/17

the 3D imaging clustering
• Reconstruction: need to separate individual particles in high pile-up environment
• Current algorithm: imaging-clustering*  

=> best suited for the high granularity offered by the HGCal
- builds 2d-clusters (each layer)  

based on the energy-density  
of the cells (energy and distance)

- associate 2d-clusters aligned  
along the shower axis  
over different layers

• Extendable to more than two dimensions:
- 3d spatial clustering already showed improvements => exploit full spatial correlation of the

shower development

• * inspired by: [A. Rodriguez, A. Laio, “Clustering by fast search and find of density peaks”,  
 Science 344 (6191), 1492-1496. (June 26, 2014)] 8

Status of EK+ HE Reco

Michalis Bachtis
(CERN-PH)

Upgrade TP meeting
On behalf of the GED working team

26/11/14

Status of EK+ HE Reco

Michalis Bachtis
(CERN-PH)

Upgrade TP meeting
On behalf of the GED working team

26/11/14

high pT jet
O(500 GeV)

Tracks and clusters clearly
identifiable by eye throughout

most of detector.

140PU

example of  
3d-cluster 
pattern recognition

example of  
2d-cluster 
topology

5CHALLENGE: NEW DETECTORS

▸ High Granularity Calorimeter will provide 3D information of a
particle shower as it evolves

Jan 19, 2018CMS HGCal upgrade Huaqiao Zhang @ HKUST

The HGCal Geometries

11

• HGCal

§ Ecal + Hcal

• Ecal (CE-E)

§ 28 layers Si + W/Pb/Cu

§ 25 X0 & ~1.3l

• Hcal (CE-H)

§ 24 layers Si/Scintillator

+ Stainless Steel

§ ~8.5l

• Total Silicon:

§ 600 m2

• Total scintillator

§ 500 m2

• 6 M Channels

V

high energy  
particle shower

V
tracks and

clusters

Arabella Martelli 19/05/17

the 3D imaging clustering
• Reconstruction: need to separate individual particles in high pile-up environment
• Current algorithm: imaging-clustering*  

=> best suited for the high granularity offered by the HGCal
- builds 2d-clusters (each layer)  

based on the energy-density  
of the cells (energy and distance)

- associate 2d-clusters aligned  
along the shower axis  
over different layers

• Extendable to more than two dimensions:
- 3d spatial clustering already showed improvements => exploit full spatial correlation of the

shower development

• * inspired by: [A. Rodriguez, A. Laio, “Clustering by fast search and find of density peaks”,  
 Science 344 (6191), 1492-1496. (June 26, 2014)] 8

Status of EK+ HE Reco

Michalis Bachtis
(CERN-PH)

Upgrade TP meeting
On behalf of the GED working team

26/11/14

Status of EK+ HE Reco

Michalis Bachtis
(CERN-PH)

Upgrade TP meeting
On behalf of the GED working team

26/11/14

high pT jet
O(500 GeV)

Tracks and clusters clearly
identifiable by eye throughout

most of detector.

140PU

example of  
3d-cluster 
pattern recognition

example of  
2d-cluster 
topology

5CHALLENGE: NEW DETECTORS

▸ High Granularity Calorimeter will provide 3D information of a
particle shower as it evolves

Jan 19, 2018CMS HGCal upgrade Huaqiao Zhang @ HKUST

The HGCal Geometries

11

• HGCal

§ Ecal + Hcal

• Ecal (CE-E)

§ 28 layers Si + W/Pb/Cu

§ 25 X0 & ~1.3l

• Hcal (CE-H)

§ 24 layers Si/Scintillator

+ Stainless Steel

§ ~8.5l

• Total Silicon:

§ 600 m2

• Total scintillator

§ 500 m2

• 6 M Channels

V

high energy  
particle shower

V
tracks and

clusters

CHALLENGE: BIG DATA

▸ HL-LHC will reach 1 exabyte of data per year

CHALLENGE: BIG DATA

CHAPTER 1: OPPORTUNITIES &
CHALLENGES OF DEEP LEARNING

CHAPTER 1: OPPORTUNITIES &
CHALLENGES OF DEEP LEARNING

CHAPTER 2: UNSUPERVISED ANOMALY
DETECTION FOR NEW PHYSICS

CHAPTER 1: OPPORTUNITIES &
CHALLENGES OF DEEP LEARNING

CHAPTER 2: UNSUPERVISED ANOMALY
DETECTION FOR NEW PHYSICS

CHAPTER 3: DEEP LEARNING IN THE
TRIGGER

CHAPTER 1: OPPORTUNITIES &
CHALLENGES OF DEEP LEARNING

CHAPTER 2: UNSUPERVISED ANOMALY
DETECTION FOR NEW PHYSICS

CHAPTER 3: DEEP LEARNING IN THE
TRIGGER

THE LHC’S FAVORITE WAY TO MAKE HIGGS BOSONS 9

1

H

g

g

b

b

signal 
gg→H→bb

t

AN OVERWHELMING BACKGROUND 9

1

H

g

g

b

b

signal 
gg→H→bb

background 
gg→bb

t

Figure 3: Diagrams for the gg → bb̄ subprocess.

factor 1/xi is included in the unintegrated gluon densities fg. As a result, in the calculation of

the hard matrix element, we shall write the polarization tensor corresponding to the incoming
active gluons, in the form

eµ1e
ν
2 ∝ T µν =

[(

Q−
p

2

)µ (

Q +
p

2

)ν]

t
. (16)

We are now ready to compute the cross sections for, first, the subprocess gg → bb̄+ g, and

then for gg → gg + g, in which a third jet, g, is emitted.

Note that, because of the gluon vertex factors (13,14), the integral (12) for the effective
luminosity Leff for gluon bremsstrahlung from the screening gluon is less sensitive to the infrared

region than the analogous integral (9) for the standard exclusive luminosity L in the non-
radiative case.

5 Exclusive bb̄ + g production

First, recall that the x axis is directed along the emitted gluon transverse momentum p⃗t and
note, that the component of the tensor T µν linear in Qy, that is Qypx − pxQy, vanishes for the

gg → bb̄ matrix element in the massless quark limit. Indeed, such a component corresponds to
the Jz = 0, octet state of the incoming gluons, for which the gg → bb̄ matrix element vanishes

in the massless quark limit, see footnote 5. Therefore, we need consider only the polarization
tensor

eµ1e
ν
2 ∝ T µν = (Q− p/2)x(Q + p/2)x +QyQy, (17)

where the indices xx and yy on the right-hand-side play the role of µν on the left-hand-side. The
contributions to the gg → bb̄ amplitude, corresponding to Fig. 3(a), contain ū(p1)e/νk/e/µv(p2),

where k is the t-channel quark momentum. The sum of the contributions with a longitudinal
component of k and the contribution of the diagram with s-channel gluon, Fig. 3(b), vanishes in

the massless quark limit, analogously to the Jz = 0 case. The T xx component gives γxk/tγx = q/
where q⃗ = k⃗x− k⃗y, that is qx = kx and qy = −ky. Similarly, the T yy component gives −q/. Thus,
when calculating the effective gg luminosity for octet qq̄ production we have to use

V8 ≡ V8q =
[(

Q−
p

2

)

x

(

Q +
p

2

)

x
−QyQy

]

, (18)

10

b
g

g

b
—

0.1 1 10
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

σσσσ
ZZ

σσσσ
WW

σσσσ
WH

σσσσ
VBF

M
H
=125 GeV

WJS2012

σσσσ
jet

(E
T

jet
 > 100 GeV)

σσσσ
jet

(E
T

jet
 > √√√√s/20)

σσσσ
ggH

LHCTevatron

e
v
e

n
ts

 /
 s

e
c
 f

o
r
L

 =
 1

0
3

3
 c

m
-2
s

-1

σσσσ
b

σσσσ
tot

proton - (anti)proton cross sections

σσσσ
W

σσσσ
Z

σσσσ
t

σ

σ

σ

σ

((((n
b

))))

√√√√s (TeV)

{

AN OVERWHELMING BACKGROUND 9

1

H

g

g

b

b

signal 
gg→H→bb

background 
gg→bb

t

Figure 3: Diagrams for the gg → bb̄ subprocess.

factor 1/xi is included in the unintegrated gluon densities fg. As a result, in the calculation of

the hard matrix element, we shall write the polarization tensor corresponding to the incoming
active gluons, in the form

eµ1e
ν
2 ∝ T µν =

[(

Q−
p

2

)µ (

Q +
p

2

)ν]

t
. (16)

We are now ready to compute the cross sections for, first, the subprocess gg → bb̄+ g, and

then for gg → gg + g, in which a third jet, g, is emitted.

Note that, because of the gluon vertex factors (13,14), the integral (12) for the effective
luminosity Leff for gluon bremsstrahlung from the screening gluon is less sensitive to the infrared

region than the analogous integral (9) for the standard exclusive luminosity L in the non-
radiative case.

5 Exclusive bb̄ + g production

First, recall that the x axis is directed along the emitted gluon transverse momentum p⃗t and
note, that the component of the tensor T µν linear in Qy, that is Qypx − pxQy, vanishes for the

gg → bb̄ matrix element in the massless quark limit. Indeed, such a component corresponds to
the Jz = 0, octet state of the incoming gluons, for which the gg → bb̄ matrix element vanishes

in the massless quark limit, see footnote 5. Therefore, we need consider only the polarization
tensor

eµ1e
ν
2 ∝ T µν = (Q− p/2)x(Q + p/2)x +QyQy, (17)

where the indices xx and yy on the right-hand-side play the role of µν on the left-hand-side. The
contributions to the gg → bb̄ amplitude, corresponding to Fig. 3(a), contain ū(p1)e/νk/e/µv(p2),

where k is the t-channel quark momentum. The sum of the contributions with a longitudinal
component of k and the contribution of the diagram with s-channel gluon, Fig. 3(b), vanishes in

the massless quark limit, analogously to the Jz = 0 case. The T xx component gives γxk/tγx = q/
where q⃗ = k⃗x− k⃗y, that is qx = kx and qy = −ky. Similarly, the T yy component gives −q/. Thus,
when calculating the effective gg luminosity for octet qq̄ production we have to use

V8 ≡ V8q =
[(

Q−
p

2

)

x

(

Q +
p

2

)

x
−QyQy

]

, (18)

10

b
g

g

b
—

SV1

BASICS OF DOUBLE-B TAGGING (RECAP) 10

PV
jet

SV2

IP2

charged  
lepton

displaced
tracks

H(bb) jet

IP1

‣ Relative positions of SVs

b hadrons have long lifetimes:  
travel O(mm) before decay!

flight distance

‣ Handles:
‣ secondary vertices
‣ displaced tracks
‣ large impact parameters
‣ soft leptons

NEURAL NETWORK (RECAP) 11

ℓk
j = ϕ (∑i wijℓk−1

i + bj)▸ Classic fully connected
architecture

▸ Each input multiplied by a
weight

▸ Weighted values are
summed, bias is added

▸ Nonlinear activation
function is applied

▸ Trained by varying the
parameters to  
minimize a loss  
function (quantifies  
how many mistakes  
the network makes)

ℓk−1
i

wij ℓk
j

A sufficiently “wide” neural network
can approximate any function!

BASICS OF DEEP LEARNING 12

BASICS OF DEEP LEARNING 12

‣ Step 0: Define the problem (choice of loss function)  
 
 
 

BASICS OF DEEP LEARNING 12

‣ Step 0: Define the problem (choice of loss function)  
 
 
 

L = −y log(p) + (1−y)log(1−p)

y = 0 (background) or 1 (signal) 
p = output of our NN (probability of signal)

BASICS OF DEEP LEARNING 12

‣ Step 0: Define the problem (choice of loss function)  
 
 
 

L = −y log(p) + (1−y)log(1−p)

y = 0 (background) or 1 (signal) 
p = output of our NN (probability of signal)

if p ~ y, L ~ 0 (correct!)  
if p ~ 1-y, L ~ ∞ (incorrect!)

BASICS OF DEEP LEARNING 12

‣ Step 0: Define the problem (choice of loss function)  
 
 
 

‣ Step 1: Acquire lots of labeled data and split into training
and testing sets

L = −y log(p) + (1−y)log(1−p)

y = 0 (background) or 1 (signal) 
p = output of our NN (probability of signal)

if p ~ y, L ~ 0 (correct!)  
if p ~ 1-y, L ~ ∞ (incorrect!)

BASICS OF DEEP LEARNING 12

‣ Step 0: Define the problem (choice of loss function)  
 
 
 

‣ Step 1: Acquire lots of labeled data and split into training
and testing sets

‣ Step 2: Select input features

L = −y log(p) + (1−y)log(1−p)

y = 0 (background) or 1 (signal) 
p = output of our NN (probability of signal)

if p ~ y, L ~ 0 (correct!)  
if p ~ 1-y, L ~ ∞ (incorrect!)

BASICS OF DEEP LEARNING 12

‣ Step 0: Define the problem (choice of loss function)  
 
 
 

‣ Step 1: Acquire lots of labeled data and split into training
and testing sets

‣ Step 2: Select input features
‣ Step 3: Explore/train different neural network

architectures

L = −y log(p) + (1−y)log(1−p)

y = 0 (background) or 1 (signal) 
p = output of our NN (probability of signal)

if p ~ y, L ~ 0 (correct!)  
if p ~ 1-y, L ~ ∞ (incorrect!)

BASICS OF DEEP LEARNING 12

‣ Step 0: Define the problem (choice of loss function)  
 
 
 

‣ Step 1: Acquire lots of labeled data and split into training
and testing sets

‣ Step 2: Select input features
‣ Step 3: Explore/train different neural network

architectures
‣ Step 4: Evaluate performance

L = −y log(p) + (1−y)log(1−p)

y = 0 (background) or 1 (signal) 
p = output of our NN (probability of signal)

if p ~ y, L ~ 0 (correct!)  
if p ~ 1-y, L ~ ∞ (incorrect!)

CMS OPEN H(BB) DATASET 13

‣ Derived datasets (ROOT & HDF5):  
http://opendata-dev.web.cern.ch/record/12102

‣ 182 files, 245 GB, 18 million total entries (jets)
‣ event features, e.g. MET, ρ (average density)
‣ jet features, e.g. mass, pT, N-subjettiness variables
‣ particle candidate features, e.g. pT, η, ϕ (for up to 100 particles)
‣ charged particle / track features, e.g. impact parameter (for up to 60 tracks)
‣ secondary vertex features, e.g. flight distance (for up to 5 vertices)

http://opendata-dev.web.cern.ch/record/12102

https://github.com/cernopendata-datascience/HiggsToBBMachineLearning

DEMO: SIMPLE NEURAL NETWORK TRAINING 14

Layer (type) Output Shape Param #
===
input (InputLayer) (None, 27) 0

bn_1 (BatchNormalization) (None, 27) 108

dense_1 (Dense) (None, 64) 1792

dense_2 (Dense) (None, 32) 2080

dense_3 (Dense) (None, 32) 1056

output (Dense) (None, 2) 66
===
Total params: 5,102
Trainable params: 5,048
Non-trainable params: 54

‣ Train fully connected neural network with high level
features in ~30 lines of code

https://github.com/cernopendata-datascience/HiggsToBBMachineLearning

“DEEP” DOUBLE-B TAGGER 15

secondary  
vertex 
inputs

track 
inputs

expert  
inputs

“DEEP” DOUBLE-B TAGGER 15

secondary  
vertex 
inputs

track 
inputs

expert  
inputs

(60, 8)

(5, 2)

‣ Process low-level track and SV inputs as ordered lists

“DEEP” DOUBLE-B TAGGER 15

secondary  
vertex 
inputs

Conv1D 
(2 layers,  

32+32 units,  
dropout = 0.1)

Conv1D 
(2 layers,  

32+32 units,  
dropout = 0.1)

track 
inputs

expert  
inputs

(60, 8)

(5, 2)

‣ Process low-level track and SV inputs as ordered lists
‣ Convolutional NN layers: share parameters across inputs, …

“DEEP” DOUBLE-B TAGGER 15

secondary  
vertex 
inputs

Conv1D 
(2 layers,  

32+32 units,  
dropout = 0.1)

Conv1D 
(2 layers,  

32+32 units,  
dropout = 0.1)

track 
inputs

GRU  
(50 units, 

dropout = 0.1)

GRU  
(50 units, 

dropout = 0.1)

expert  
inputs

(60, 32)

(5, 32)

(60, 8)

(5, 2)

‣ Process low-level track and SV inputs as ordered lists
‣ Convolutional NN layers: share parameters across inputs, …
‣ Recurrent NN layers: performs dimensional reduction, …

“DEEP” DOUBLE-B TAGGER 15

secondary  
vertex 
inputs

Conv1D 
(2 layers,  

32+32 units,  
dropout = 0.1)

Conv1D 
(2 layers,  

32+32 units,  
dropout = 0.1)

track 
inputs

GRU  
(50 units, 

dropout = 0.1)

GRU  
(50 units, 

dropout = 0.1)

expert  
inputs

Fully
connected 

 
(1 layer,  

100 units,  
dropout = 0.1)

(60, 32)

(5, 32)

(60, 8)

(5, 2)

(27)

(50)

(50)

Output  
 

H(bb)
QCD

(100)

‣ Process low-level track and SV inputs as ordered lists
‣ Convolutional NN layers: share parameters across inputs, …
‣ Recurrent NN layers: performs dimensional reduction, …

‣ Combine in final layer with expert inputs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tagging efficiency (H ! bb̄)

10�3

10�2

10�1

100

M
is

ta
gg

in
g

ra
te

(Q
C

D
)

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV

DeepDoubleBvL, AUC = 97.3%
double-b, AUC = 91.3%

x2.2 better
signal

efficiency

x10 better
background

rejection
0.0 0.2 0.4 0.6 0.8 1.0

Dicriminator H ! bb̄
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
or

m
al

iz
ed

sc
al

e

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV

QCD
H ! bb̄

TAGGING PERFORMANCE 16DP-2018/033

�0.8 �0.4 0.0 0.4 0.8
double-b

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

sc
al

e

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV

QCD
H ! bb̄

https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTV13TeVDDBDDC

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tagging efficiency (H ! bb̄)

10�3

10�2

10�1

100

M
is

ta
gg

in
g

ra
te

(Q
C

D
)

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV

DeepDoubleBvL, AUC = 97.3%
double-b, AUC = 91.3%

x2.2 better
signal

efficiency

x10 better
background

rejection
0.0 0.2 0.4 0.6 0.8 1.0

Dicriminator H ! bb̄
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
or

m
al

iz
ed

sc
al

e

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV

QCD
H ! bb̄

TAGGING PERFORMANCE 16DP-2018/033

‣ Success for deep learning!

https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTV13TeVDDBDDC

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tagging efficiency (H ! bb̄)

10�3

10�2

10�1

100

M
is

ta
gg

in
g

ra
te

(Q
C

D
)

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV

DeepDoubleBvL, AUC = 97.3%
double-b, AUC = 91.3%

x2.2 better
signal

efficiency

x10 better
background

rejection

TAGGING PERFORMANCE 16DP-2018/033

‣ Success for deep learning!

https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTV13TeVDDBDDC

40 60 80 100 120 140 160 180 200
mSD [GeV]

N
or

m
al

iz
ed

sc
al

e
(Q

C
D

)

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV
Tagging H ! bb̄

No discriminator cut
25.0% mistagging rate
10.0% mistagging rate
5.0% mistagging rate
1.0% mistagging rate

LEARNING THE JET MASS (SCULPTING) 17DP-2018/033

‣ An unintended consequence: network “learns” the jet mass

tighter cuts 
on discriminator

https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTV13TeVDDBDDC

Mass Independence - Decorrelation

• Custom penalty term in loss function
• Minimize the difference – tag and anti-tag distributions
• Kullback-Leibler divergence to quantify the difference

31 October 2018 12

MITIGATING THE MASS SCULPTING

Mass Independence - Decorrelation

• Custom penalty term in loss function
• Minimize the difference – tag and anti-tag distributions
• Kullback-Leibler divergence to quantify the difference

31 October 2018 12

‣ How can we quantify the mass sculpting?

MITIGATING THE MASS SCULPTING

Mass Independence - Decorrelation

• Custom penalty term in loss function
• Minimize the difference – tag and anti-tag distributions
• Kullback-Leibler divergence to quantify the difference

31 October 2018 12

‣ How can we quantify the mass sculpting?

‣ Kullback-Liebler divergence

MITIGATING THE MASS SCULPTING

DKL = h(x) log (h(x)
q(x))

Mass Independence - Decorrelation

• Custom penalty term in loss function
• Minimize the difference – tag and anti-tag distributions
• Kullback-Leibler divergence to quantify the difference

31 October 2018 12

Mass Independence - Decorrelation

• Custom penalty term in loss function
• Minimize the difference – tag and anti-tag distributions
• Kullback-Leibler divergence to quantify the difference

31 October 2018 12

‣ How can we quantify the mass sculpting?

‣ Kullback-Liebler divergence

‣ How can we mitigate the mass sculpting?

MITIGATING THE MASS SCULPTING

DKL = h(x) log (h(x)
q(x))

Mass Independence - Decorrelation

• Custom penalty term in loss function
• Minimize the difference – tag and anti-tag distributions
• Kullback-Leibler divergence to quantify the difference

31 October 2018 12

Mass Independence - Decorrelation

• Custom penalty term in loss function
• Minimize the difference – tag and anti-tag distributions
• Kullback-Leibler divergence to quantify the difference

31 October 2018 12

‣ How can we quantify the mass sculpting?

‣ Kullback-Liebler divergence

‣ How can we mitigate the mass sculpting?

‣ Add it to the loss function as a “penalty”

L = Ldisc + λDKL

MITIGATING THE MASS SCULPTING

DKL = h(x) log (h(x)
q(x))

Mass Independence - Decorrelation

• Custom penalty term in loss function
• Minimize the difference – tag and anti-tag distributions
• Kullback-Leibler divergence to quantify the difference

31 October 2018 12

Mass Independence - Decorrelation

• Custom penalty term in loss function
• Minimize the difference – tag and anti-tag distributions
• Kullback-Leibler divergence to quantify the difference

31 October 2018 12

40 60 80 100 120 140 160 180 200
mSD [GeV]

N
or

m
al

iz
ed

sc
al

e
(Q

C
D

)

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV
Tagging H ! bb̄

No discriminator cut
25.0% mistagging rate
10.0% mistagging rate
5.0% mistagging rate
1.0% mistagging rate

MASS SCULPTING MITIGATION 19DP-2018/033

tighter cuts 
on discriminator

https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTV13TeVDDBDDC

40 60 80 100 120 140 160 180 200
mSD [GeV]

N
or

m
al

iz
ed

sc
al

e
(Q

C
D

)

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV
Tagging H ! bb̄

No discriminator cut
25.0% mistagging rate
10.0% mistagging rate
5.0% mistagging rate
1.0% mistagging rate

40 60 80 100 120 140 160 180 200
mSD [GeV]

N
or

m
al

iz
ed

sc
al

e
(Q

C
D

)

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV
Tagging H ! bb̄

No discriminator cut
25.0% mistagging rate
10.0% mistagging rate
5.0% mistagging rate
1.0% mistagging rate

MASS SCULPTING MITIGATION 19DP-2018/033

‣ Penalty term mitigates the mass sculpting

tighter cuts 
on discriminator

https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTV13TeVDDBDDC

40 60 80 100 120 140 160 180 200
mSD [GeV]

N
or

m
al

iz
ed

sc
al

e
(Q

C
D

)

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV
Tagging H ! bb̄

No discriminator cut
25.0% mistagging rate
10.0% mistagging rate
5.0% mistagging rate
1.0% mistagging rate

40 60 80 100 120 140 160 180 200
mSD [GeV]

N
or

m
al

iz
ed

sc
al

e
(Q

C
D

)

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV
Tagging H ! bb̄

No discriminator cut
25.0% mistagging rate
10.0% mistagging rate
5.0% mistagging rate
1.0% mistagging rate

MASS SCULPTING MITIGATION 19DP-2018/033

‣ Penalty term mitigates the mass sculpting
‣ Small trade-off with performance

tighter cuts 
on discriminator

https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTV13TeVDDBDDC

CAN WE DO EVEN BETTER?

CAN WE DO EVEN BETTER?

‣ Ordered lists of particles not the most natural representation of a jet
‣ What if we consider each jet as a graph of interconnected particles?

http://arxiv.org/abs/1612.0222
http://arXiv.org/abs/1704.01212
http://arxiv.org/abs/1801.07829
http://arxiv.org/abs/1903.0242

CAN WE DO EVEN BETTER?

‣ Ordered lists of particles not the most natural representation of a jet
‣ What if we consider each jet as a graph of interconnected particles?

‣ Geometric deep learning (a.k.a graph neural networks, interaction
networks, message-passing neural networks) is the extension of deep
learning to deal with data structured as a graph or on a manifold
‣ See Interaction Networks for Learning about Objects, Relations, and

Physics [arXiv:1612.0222], Neural Message Passing for Quantum
Chemistry [arXiv:1704.01212], Dynamic Graph CNN for Learning
on Point Clouds [arXiv:1801.07829], Fast Graph Representation
Learning with PyTorch Geometric [arXiv:1903.0242]

http://arxiv.org/abs/1612.0222
http://arXiv.org/abs/1704.01212
http://arxiv.org/abs/1801.07829
http://arxiv.org/abs/1903.0242

INTERACTION NETWORKS FOR JET TAGGING 21
arXiv:1908.05318 
arXiv:1909.12285

p3

p2 p1

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285

INTERACTION NETWORKS FOR JET TAGGING 21

‣ A graph of objects and their connections is defined

arXiv:1908.05318 
arXiv:1909.12285

p3

p2 p1

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285

INTERACTION NETWORKS FOR JET TAGGING 21

‣ A graph of objects and their connections is defined

arXiv:1908.05318 
arXiv:1909.12285

p3

p2 p1

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285

INTERACTION NETWORKS FOR JET TAGGING 21

‣ A graph of objects and their connections is defined
‣ NN is evaluated on pairs of connected objects to

produce a message

arXiv:1908.05318 
arXiv:1909.12285

ϕ(p1, p2)

ϕ(p1, p3)

p3

p2 p1

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285

INTERACTION NETWORKS FOR JET TAGGING 21

‣ A graph of objects and their connections is defined
‣ NN is evaluated on pairs of connected objects to

produce a message
‣ Messages are communicated from nearest neighbors

(and summed*) to update each object's hidden state

arXiv:1908.05318 
arXiv:1909.12285

ϕ(p1, p2)

ϕ(p1, p3)

p3

p2 p1 p1’

*sum preserves permutation invariance

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285

INTERACTION NETWORKS FOR JET TAGGING 21

‣ A graph of objects and their connections is defined
‣ NN is evaluated on pairs of connected objects to

produce a message
‣ Messages are communicated from nearest neighbors

(and summed*) to update each object's hidden state
‣ A single output is computed based on the summed*

hidden states of all objects in the graph

arXiv:1908.05318 
arXiv:1909.12285

ϕ(p1, p2)

ϕ(p1, p3)

p3

p2 p1 p1’

ɸ(∑pi’) p3’

p2’

*sum preserves permutation invariance

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285

FULL IN ARCHITECTURE 22
arXiv:1908.05318 
arXiv:1909.12285

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

!C, "O , "R
expressed as
dense neural

networks

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
E [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

…

…

… … … …

…

…

…

… … … … … … … …

…

…

…

…

… … … …

…� �
INPUT : I [P x NO]

OUTPUT

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285

FULL IN ARCHITECTURE 22
arXiv:1908.05318 
arXiv:1909.12285

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

!C, "O , "R
expressed as
dense neural

networks

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
E [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

…

…

… … … …

…

…

…

… … … … … … … …

…

…

…

…

… … … …

…� �
INPUT : I [P x NO]

OUTPUT

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285

FULL IN ARCHITECTURE 22
arXiv:1908.05318 
arXiv:1909.12285

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

!C, "O , "R
expressed as
dense neural

networks

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
E [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

…

…

… … … …

…

…

…

… … … … … … … …

…

…

…

…

… … … …

…� �
INPUT : I [P x NO]

OUTPUT

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285

FULL IN ARCHITECTURE 22
arXiv:1908.05318 
arXiv:1909.12285

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

!C, "O , "R
expressed as
dense neural

networks

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
E [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

…

…

… … … …

…

…

…

… … … … … … … …

…

…

…

…

… … … …

…� �
INPUT : I [P x NO]

OUTPUT

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285

FULL IN ARCHITECTURE 22
arXiv:1908.05318 
arXiv:1909.12285

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

!C, "O , "R
expressed as
dense neural

networks

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
E [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

…

…

… … … …

…

…

…

… … … … … … … …

…

…

…

…

… … … …

…� �
INPUT : I [P x NO]

OUTPUT

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285

FULL IN ARCHITECTURE 22
arXiv:1908.05318 
arXiv:1909.12285

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

!C, "O , "R
expressed as
dense neural

networks

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
E [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

…

…

… … … …

…

…

…

… … … … … … … …

…

…

…

…

… … … …

…� �
INPUT : I [P x NO]

OUTPUT

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285

FULL IN ARCHITECTURE 22
arXiv:1908.05318 
arXiv:1909.12285

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

!C, "O , "R
expressed as
dense neural

networks

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
E [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

…

…

… … … …

…

…

…

… … … … … … … …

…

…

…

…

… … … …

…� �
INPUT : I [P x NO]

OUTPUT

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Tagging efficiency (H ! bb̄)
10�3

10�2

10�1

100

M
is

ta
gg

in
g

ra
te

(Q
C

D
)

2016 (13 TeV)CMS Simulat ion Open Data

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV

Interaction network, AUC = 99.0%
Interaction network, adversarial, AUC = 98.6%
Interaction network, QCD reweight, AUC = 98.3%
Interaction network, DDT, AUC = 98.5%
Deep double-b, AUC = 97.2%
Deep double-b, mass decor., AUC = 96.5%

IN PERFORMANCE FOR HIGGS TAGGING 23
arXiv:1908.05318 
arXiv:1909.12285

~75-85% signal eff.  
@ 1% mistag. rate

‣ Performance gain
‣ GNNs have many other

applications in HEP
‣ tracking [arXiv:

1810.06111]
‣ clustering [arXiv:

1902.07987]
‣ detector linking (i.e.

particle flow)
‣ exotic particle tagging
‣ anomaly detection
‣ detector simulation

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285
http://arxiv.org/abs/1810.06111
http://arxiv.org/abs/1810.06111
http://arXiv.org/abs/1902.07987
http://arXiv.org/abs/1902.07987

GNNS FOR PARTICLE FLOW 24PF elements

5

input per event:
set of elements !={ECAL, HCAL, TRK,...}

ECAL
HCAL

TRK

~O(5000)

GNNS FOR PARTICLE FLOW 24PF candidates

6

output per event:
set of candidates !={PFCand,...}

~O(2500)

PFCand

GNNS FOR PARTICLE FLOW 24PF candidates

6

output per event:
set of candidates !={PFCand,...}

~O(2500)

PFCand

PF blocks

7

output per event:
set of candidates !={PFCand,...}

blocks

~O(5000) ~O(2500)

~O(2000)

PFCand

block: candidate associated to elements
A few elements → a few candidates

ECAL
HCAL

TRK

GNNS FOR PARTICLE FLOW 25

Input Graph

GNNS FOR PARTICLE FLOW 25

Input Graph Truth Graph

GNNS FOR PARTICLE FLOW 25

Input Graph Truth Graph Output Graph

CHAPTER 1: OPPORTUNITIES &
CHALLENGES OF GEOMETRIC DEEP
LEARNING

CHAPTER 2: UNSUPERVISED ANOMALY
DETECTION FOR NEW PHYSICS

CHAPTER 3: DEEP LEARNING IN THE
TRIGGER

TYPICAL DIJET SEARCH 27

▸ Look for new heavy particle decaying
to two (wide) jets

▸ Compute invariant mass of two
high-pT (wide) jets

▸ Look for a bump (indicating a new
resonance) over a smoothly falling
background

▸ Problems

▸ Very large background

▸ Many signal models; should we
create an ML algorithm to identify
each one?

▸ Can we use unsupervised methods
for model-agnostic new physics
searches?

TYPICAL DIJET SEARCH 28

13

Signals and backgrounds with jets
Main challenge for jet searches: large backgrounds

Mass of di-jet system 
(~new particle mass)

Number of events 
produced by the LHC

Background

Signal

Introduction Monitoring and calibration Delayed reconstruction Real-time analysis

4

Z
0

q

q

q

q

▸ Map an input onto itself passing
through a latent representation 

▸ Unsupervised algorithm, used
for data compression,
generation, clustering, etc.

▸ Anomaly: any event whose
output is “far” from the input

AUTO ENCODERS IN ONE SLIDE 29

See: O. Cerri Lepton Photon 2019, K.
Wozniak CHEP 2019

https://indico.cern.ch/event/688643/contributions/3466190
https://indico.cern.ch/event/773049/contributions/3473202/
https://indico.cern.ch/event/773049/contributions/3473202/

Optimal
training

AE ANOMALY DETECTION: TRAINING 30

En
co

de
r

D
ec

od
er

z2

z1

Latent
space

d(in, out)

Training:
Fit the VAE params to
minimize the input-output
distance

AE ANOMALY DETECTION: INFERENCE 31

En
co

de
r

D
ec

od
er

z2

z1

Latent
space

d(in, out)

Observed
value

OK
Evaluate:
One-sided hypothesis test on
the input-output distance

AE ANOMALY DETECTION: INFERENCE 32

En
co

de
r

D
ec

od
er

z2

z1

Latent
space

d(in, out)

Observed
value

ANO
M

ALY

Evaluate:
One-sided hypothesis test on
the input-output distance

VAE FOR JET IMAGES 33

6

Problem Statement Solution Approach Results

VAE FOR JET IMAGES

Dataset:

I 10 fb�1 of QCD simulation

I Pythia + Delphes

I Clustered particle-flow Jets (=2)
with anti-kt (R=0.8)

I ! Set of Dijet events

Set of constituents in each jet

I Momentum & 2 angles

I ! transform to angle-binned
pT-image

! Train on Set of QCD Images

bin i

bin j

De Oliveira et al.: arXiv:1511.05190 (Jet images)

‣ Dataset:
‣ QCD dijet simulation

(Pythia + Delphes)
‣ Input:
‣ anti-kT R=0.8 jets
‣ transformed to  

binned, pT-weighted  
jet images

‣ Training in control region:  
1.4 < |∆η| < 2.4

‣ Application in signal
region: |∆η| < 1.4

dN
dmjj

mjj

SM

Loss

dN
dLoss

not tagged

SIGNAL REGIONS 34

‣ Cut on the loss to keep 1% of background events
‣ Use untagged events to constrain background shape in

tagged region
3

H

g

g

b

b

g

1%

dN
dmjj

mjj

SM

Loss

dN
dLoss

not tagged

SIGNAL REGIONS 34

‣ Cut on the loss to keep 1% of background events
‣ Use untagged events to constrain background shape in

tagged region
3

H

g

g

b

b

g

1%

dN
dmjj

mjj

signal

SM

tagged as anomalous

‣ Note background mjj distribution is not preserved after
applying selection on loss (sculpting!)

‣ But we can apply a mjj dependent  
threshold on the loss to preserve  
shape of background

VAE FOR JET IMAGES 35

‣ Note background mjj distribution is not preserved after
applying selection on loss (sculpting!)

‣ But we can apply a mjj dependent  
threshold on the loss to preserve  
shape of background

VAE FOR JET IMAGES 35

8

Problem Statement Solution Approach Results

VAE TO BOOST SUPERVISED SEARCHES ON TAILS

Select events

8
>>>><

>>>>:

Dijets pT>40 GeV

|⌘| < 2.4

mJJ>1100 GeV

CMS analysis for selection:
arXiv:1806.00843

I Train VAE on data sideband: |�⌘| � 1.4

I Apply VAE to signal region: |�⌘| < 1.4

I Select events with Loss > threshold
s.t. some fraction of events (here 1%) is
kept

L > LT

I PROS: enhance SIG (here: GRS ! t̄t broad with xsec 10 pb)

I CONS: shape the BG, in a way that could be dangerous for a signal
in that mass range

I Can still run bump hunt if ’excess’ is not on bulk of the distribution

10

Problem Statement Solution Approach Results

VAE TO BOOST SUPERVISED SEARCHES ON BULK

Select events

8
>>>><

>>>>:

Dijets pT>40 GeV

|⌘|<2.4

mJJ>1100GeV

Ref: CMS analysis for selection

I Train VAE on data sideband: |�⌘| � 1.4.

I Apply VAE to signal region: |�⌘| < 1.4

I Select events with MJJ dependent cut (
quantile regression keeping 1% of events)

I PROS: keeps background unbiased
I CONS: reshape the signal here: GRS ! WW with xsec 40 pb) in

unfavourable way (penalise tail)
I Can still run a bump hunt if core of the distribution

background
signal 
GRS→WW

10

Problem Statement Solution Approach Results

VAE TO BOOST SUPERVISED SEARCHES ON BULK

Select events

8
>>>><

>>>>:

Dijets pT>40 GeV

|⌘|<2.4

mJJ>1100GeV

Ref: CMS analysis for selection

I Train VAE on data sideband: |�⌘| � 1.4.

I Apply VAE to signal region: |�⌘| < 1.4

I Select events with MJJ dependent cut (
quantile regression keeping 1% of events)

I PROS: keeps background unbiased
I CONS: reshape the signal here: GRS ! WW with xsec 40 pb) in

unfavourable way (penalise tail)
I Can still run a bump hunt if core of the distribution

‣ Comparison between standard
dijet search and VAE-assisted
search

‣ Sensitivity boosted from 3σ to
4σ

‣ Can we apply this technique in
the “trigger” algorithm in
hardware?

RESULTS 36

11

Problem Statement Solution Approach Results

VAE TO BOOST SUPERVISED SEARCHES ON BULK

I Consider RS Graviton ! WW
with 1.5 TeV mass Data cocktail
(pythia simulation of QCD + GRS

at different cross sections)
I Traditional approach: Bump

hunt
I VAE-boosted approach:

Bump hunt after VAE loss
cut

I NOTE: here running simple
template fit, assuming (for both)
that we know BG shape !
overestimated significance but
comparison meaningful

CHAPTER 1: OPPORTUNITIES &
CHALLENGES OF GEOMETRIC DEEP
LEARNING

CHAPTER 2: UNSUPERVISED ANOMALY
DETECTION FOR NEW PHYSICS

CHAPTER 3: DEEP LEARNING IN THE
TRIGGER

UPGRADED LEVEL-1 TRIGGER 38

L1 Trigger40 MHz

750 kHz

▸ Level-1 Trigger: 
40 MHz → 750 kHz

▸ Reconstruct and filter  
2% of events in ~12 μs

UPGRADED LEVEL-1 TRIGGER 38

L1 Trigger40 MHz

750 kHz

▸ Level-1 Trigger: 
40 MHz → 750 kHz

▸ Reconstruct and filter  
2% of events in ~12 μs

▸ Latency necessitates all
FPGA design

UPGRADED LEVEL-1 TRIGGER 38

L1 Trigger40 MHz

750 kHz

ALL FPGA ARCHITECTURE 16

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

Typical modern FPGA:

(Kintex ultrascale+)

1.3M FFs

700k LUTs

5500 DSPs

2200 BRAMs

O(50-100) optical
transceivers

running at  

~O(15) Gbs

▸ Level-1 Trigger: 
40 MHz → 750 kHz

▸ Reconstruct and filter  
2% of events in ~12 μs

▸ Latency necessitates all
FPGA design

UPGRADED LEVEL-1 TRIGGER 38

L1 Trigger40 MHz

750 kHz

ALL FPGA ARCHITECTURE 16

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

Typical modern FPGA:

(Kintex ultrascale+)

1.3M FFs

700k LUTs

5500 DSPs

2200 BRAMs

O(50-100) optical
transceivers

running at  

~O(15) Gbs

‣ Pros: reprogrammable,
high throughput,
massively parallel, & low
power

▸ Level-1 Trigger: 
40 MHz → 750 kHz

▸ Reconstruct and filter  
2% of events in ~12 μs

▸ Latency necessitates all
FPGA design

UPGRADED LEVEL-1 TRIGGER 38

L1 Trigger40 MHz

750 kHz

ALL FPGA ARCHITECTURE 16

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

Typical modern FPGA:

(Kintex ultrascale+)

1.3M FFs

700k LUTs

5500 DSPs

2200 BRAMs

O(50-100) optical
transceivers

running at  

~O(15) Gbs

‣ Pros: reprogrammable,
high throughput,
massively parallel, & low
power

‣ Con: requires domain
knowledge to program

NEURAL NETWORK OPERATIONS 39

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

NEURAL NETWORK OPERATIONS 39

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

activation function

multiplication

addition

NEURAL NETWORK OPERATIONS 39

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

activation function

multiplication

addition

Maps nicely onto FPGA
resources: high IO,

DSPs, LUTs, etc.

MACHINE LEARNING IN FPGAS? 40

FPGA

How many resources?
Can we fit in the latency requirements?

= 4,256  
multiplications

+5×32

+32×32

+64×3216×64

(ENERGY) EFFICIENT NEURAL NETWORKS 41

Further reading: arXiv:1510.00149

https://arxiv.org/abs/1510.00149

(ENERGY) EFFICIENT NEURAL NETWORKS 41

1. Compression
‣ Maintain high performance while removing redundant

synapses and neurons

Further reading: arXiv:1510.00149

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

https://arxiv.org/abs/1510.00149

(ENERGY) EFFICIENT NEURAL NETWORKS 41

1. Compression
‣ Maintain high performance while removing redundant

synapses and neurons

2. Quantization
‣ Reduce precision from 32-bit floating point to 20-bit, 8-bit, …

Further reading: arXiv:1510.00149

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

https://arxiv.org/abs/1510.00149

(ENERGY) EFFICIENT NEURAL NETWORKS 41

1. Compression
‣ Maintain high performance while removing redundant

synapses and neurons

2. Quantization
‣ Reduce precision from 32-bit floating point to 20-bit, 8-bit, …

3. Parallelization/Reuse
‣ Balance parallelization (how fast) with resources needed  

(how costly)
Further reading: arXiv:1510.00149

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

https://arxiv.org/abs/1510.00149

DESIGN EXPLORATION WITH HLS4ML 42

compressed
model

Keras
TensorFlow

PyTorch
…

tune configuration
precision

reuse/pipeline

HLS
project

HLS
conversion

Co-processing kernel

Custom firmware
design

model

Usual ML
software workflow

hls 4 ml

hls4ml

HLS 4 ML

‣ hls4ml for physicists or ML experts to translate ML algorithms
into FPGA firmware

JINST 13 (2018) P07027

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913

DESIGN EXPLORATION WITH HLS4ML 42

compressed
model

Keras
TensorFlow

PyTorch
…

tune configuration
precision

reuse/pipeline

HLS
project

HLS
conversion

Co-processing kernel

Custom firmware
design

model

Usual ML
software workflow

hls 4 ml

hls4ml

HLS 4 ML

‣ hls4ml for physicists or ML experts to translate ML algorithms
into FPGA firmware

JINST 13 (2018) P07027

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913

DESIGN EXPLORATION WITH HLS4ML 42

compressed
model

Keras
TensorFlow

PyTorch
…

tune configuration
precision

reuse/pipeline

HLS
project

HLS
conversion

Co-processing kernel

Custom firmware
design

model

Usual ML
software workflow

hls 4 ml

hls4ml

HLS 4 ML

‣ hls4ml for physicists or ML experts to translate ML algorithms
into FPGA firmware

JINST 13 (2018) P07027

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913

TRANSLATION OF ML MODELS 43

TRANSLATION OF ML MODELS 43

hls4ml convert -c keras-config.ymlTranslation

KerasJson: keras/KERAS_3layer.json
KerasH5: keras/KERAS_3layer_weights.h5
OutputDir: my-hls-test
ProjectName: myproject
XilinxPart: xcku115-flvb2104-2-i
ClockPeriod: 5
IOType: io_parallel # options: io_serial/io_parallel
HLSConfig:
 Model:
 Precision: ap_fixed<16,6>
 ReuseFactor: 1
 Strategy: Resource # options: Latency/Resource

TRANSLATION OF ML MODELS 43

hls4ml convert -c keras-config.ymlTranslation

KerasJson: keras/KERAS_3layer.json
KerasH5: keras/KERAS_3layer_weights.h5
OutputDir: my-hls-test
ProjectName: myproject
XilinxPart: xcku115-flvb2104-2-i
ClockPeriod: 5
IOType: io_parallel # options: io_serial/io_parallel
HLSConfig:
 Model:
 Precision: ap_fixed<16,6>
 ReuseFactor: 1
 Strategy: Resource # options: Latency/Resource

TRANSLATION OF ML MODELS 43

hls4ml convert -c keras-config.ymlTranslation

Model

Config

KerasJson: keras/KERAS_3layer.json
KerasH5: keras/KERAS_3layer_weights.h5
OutputDir: my-hls-test
ProjectName: myproject
XilinxPart: xcku115-flvb2104-2-i
ClockPeriod: 5
IOType: io_parallel # options: io_serial/io_parallel
HLSConfig:
 Model:
 Precision: ap_fixed<16,6>
 ReuseFactor: 1
 Strategy: Resource # options: Latency/Resource

TRANSLATION OF ML MODELS 43

‣ IOType: parallel or serial
‣ ReuseFactor: how much to

parallelize
‣ Precision: inputs, weights, biases
‣ Strategy:
‣ Resource for large NN
‣ Latency for small NN  

(fully pipelined)

hls4ml convert -c keras-config.ymlTranslation

Model

Config

KerasJson: keras/KERAS_3layer.json
KerasH5: keras/KERAS_3layer_weights.h5
OutputDir: my-hls-test
ProjectName: myproject
XilinxPart: xcku115-flvb2104-2-i
ClockPeriod: 5
IOType: io_parallel # options: io_serial/io_parallel
HLSConfig:
 Model:
 Precision: ap_fixed<16,6>
 ReuseFactor: 1
 Strategy: Resource # options: Latency/Resource

TRANSLATION OF ML MODELS 43

‣ IOType: parallel or serial
‣ ReuseFactor: how much to

parallelize
‣ Precision: inputs, weights, biases
‣ Strategy:
‣ Resource for large NN
‣ Latency for small NN  

(fully pipelined)

hls4ml convert -c keras-config.ymlTranslation

Model

Config

hls4ml build -p my-hls-test -a

Build HLS project

NETWORK TUNING: COMPRESSION 44

NETWORK TUNING: COMPRESSION 44

‣ Train with L1 regularization (down-weights unimportant
synapses) 

Lλ(w) = L(w) + λ∥w∥1 ∥w∥1 = ∑i |wi |

NETWORK TUNING: COMPRESSION 44

‣ Train with L1 regularization (down-weights unimportant
synapses) 

‣ Remove smallest weights

Lλ(w) = L(w) + λ∥w∥1 ∥w∥1 = ∑i |wi |

70% REDUCTION OF
WEIGHTS WITH NO

LOSS IN PERF.

NETWORK TUNING: COMPRESSION 44

‣ Train with L1 regularization (down-weights unimportant
synapses) 

‣ Remove smallest weights
‣ Iterate

Lλ(w) = L(w) + λ∥w∥1 ∥w∥1 = ∑i |wi |

70% REDUCTION OF
WEIGHTS WITH NO

LOSS IN PERF.

NETWORK TUNING: COMPRESSION 44

‣ Train with L1 regularization (down-weights unimportant
synapses) 

‣ Remove smallest weights
‣ Iterate

Lλ(w) = L(w) + λ∥w∥1 ∥w∥1 = ∑i |wi |

NETWORK TUNING: COMPRESSION & RESOURCES 45

Max DSP

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Quantization

 29

0101.1011101010
width

fractionalinteger

Full performance
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance
at 8 fractional bits

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

ap_fixed<width,integer> • Quantify the performance of the classifier with the AUC

• Expected AUC = AUC achieved by 32-bit floating point
inference of the neural network

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

NETWORK TUNING: COMPRESSION & RESOURCES 45

‣ Big reduction in DSPs (multipliers) with compression

Max DSP

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Quantization

 29

0101.1011101010
width

fractionalinteger

Full performance
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance
at 8 fractional bits

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

ap_fixed<width,integer> • Quantify the performance of the classifier with the AUC

• Expected AUC = AUC achieved by 32-bit floating point
inference of the neural network

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

NETWORK TUNING: COMPRESSION & RESOURCES 45

‣ Big reduction in DSPs (multipliers) with compression
‣ Easily fits on 1 FPGA after compression

Max DSP

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Quantization

 29

0101.1011101010
width

fractionalinteger

Full performance
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance
at 8 fractional bits

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

ap_fixed<width,integer> • Quantify the performance of the classifier with the AUC

• Expected AUC = AUC achieved by 32-bit floating point
inference of the neural network

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

MACHINE LEARNING IN FPGAS 46

MACHINE LEARNING IN FPGAS 46

‣ Inference of ML algorithms possible in O(100 ns) on 1 FPGA with
hls4ml!

MACHINE LEARNING IN FPGAS 46

‣ Inference of ML algorithms possible in O(100 ns) on 1 FPGA with
hls4ml!
‣ Applications across CMS, ATLAS, DUNE, and accelerator controls

MACHINE LEARNING IN FPGAS 46

muon

‣ Inference of ML algorithms possible in O(100 ns) on 1 FPGA with
hls4ml!
‣ Applications across CMS, ATLAS, DUNE, and accelerator controls
‣ E.g. muon pT determination in the CMS endcap with a DNN:  

runs in 160 ns on an FPGA and reduces the fake muon rate by  
up to 80%

MACHINE LEARNING IN FPGAS 46

muon

‣ Inference of ML algorithms possible in O(100 ns) on 1 FPGA with
hls4ml!
‣ Applications across CMS, ATLAS, DUNE, and accelerator controls
‣ E.g. muon pT determination in the CMS endcap with a DNN:  

runs in 160 ns on an FPGA and reduces the fake muon rate by  
up to 80%

‣ Currently supported:
‣ Small and large dense NNs
‣ Bernary and ternary NNs
‣ Small 1D/2D CNNs

‣ Planned support
‣ Big 1D/2D CNNs
‣ Graph NNs
‣ Other HLS/RTL backends

SUMMARY AND OUTLOOK 48

▸ Deep learning algorithms have proven to be better than
traditional algorithms in HEP for Higgs tagging and much
more

SUMMARY AND OUTLOOK 48

▸ Deep learning algorithms have proven to be better than
traditional algorithms in HEP for Higgs tagging and much
more

▸ Graph neural networks are well suited to many HEP tasks

SUMMARY AND OUTLOOK 48

▸ Deep learning algorithms have proven to be better than
traditional algorithms in HEP for Higgs tagging and much
more

▸ Graph neural networks are well suited to many HEP tasks

▸ Unsupervised methods may help us discover “unexpected”
new physics

SUMMARY AND OUTLOOK 48

▸ Deep learning algorithms have proven to be better than
traditional algorithms in HEP for Higgs tagging and much
more

▸ Graph neural networks are well suited to many HEP tasks

▸ Unsupervised methods may help us discover “unexpected”
new physics

▸ With FPGAs, ML methods can be implemented quickly and
efficiently

SUMMARY AND OUTLOOK 48

BACKUP
JAVIER DUARTE
NOVEMBER 12, 2019
UNIVERSITY OF KANSAS 

49

FROM DOUBLE-B TO DEEP DOUBLE-B 50

‣ First, we can change the architecture from a BDT to a
neural network

expert  
inputs

(27 inputs)

Output  
 

H(bb) 
QCD

(100)Fully connected 
 

(3 layers,  
100 units,  

dropout = 0.1)

FROM DOUBLE-B TO DEEP DOUBLE-B 50

‣ First, we can change the architecture from a BDT to a
neural network

expert  
inputs

(27 inputs)

Output  
 

H(bb) 
QCD

(100)Fully connected 
 

(3 layers,  
100 units,  

dropout = 0.1)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tagging efficiency (H ! bb̄)

10�3

10�2

10�1

100

M
is

ta
gg

in
g

ra
te

(Q
C

D
)

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet msd < 200 GeV

DeepDoubleX, AUC = 91.9%
double-b, AUC = 91.7%

Same inputs, simple neural network → same performance

‣ We can switch to a neural network and add more low-
level inputs based on track information and secondary
vertex information: up to 517 input variables!

FROM DOUBLE-B TO DEEP DOUBLE-B 51

Fully connected 
 

(3 layers,  
100 units,  

dropout = 0.1)

Output  
 

H(bb) 
QCD

(100)

secondary  
vertex 
inputs

track 
inputs

expert  
inputs

(60 tracks, 8 inputs per track)

(5 SVs, 2 inputs per SV)

(27 inputs)

‣ We can switch to a neural network and add more low-
level inputs based on track information and secondary
vertex information: up to 517 input variables!

FROM DOUBLE-B TO DEEP DOUBLE-B 51

Fully connected 
 

(3 layers,  
100 units,  

dropout = 0.1)

Output  
 

H(bb) 
QCD

(100)

secondary  
vertex 
inputs

track 
inputs

expert  
inputs

(60 tracks, 8 inputs per track)

(5 SVs, 2 inputs per SV)

(27 inputs)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tagging efficiency (H ! bb̄)

10�3

10�2

10�1

100

M
is

ta
gg

in
g

ra
te

(Q
C

D
)

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet msd < 200 GeV

DeepDoubleX, AUC = 93.0%
double-b, AUC = 91.7%

No big gain in performance…

‣ We can switch to a neural network and add more low-
level inputs based on track information and secondary
vertex information: up to 517 input variables!

FROM DOUBLE-B TO DEEP DOUBLE-B 51

Fully connected 
 

(3 layers,  
100 units,  

dropout = 0.1)

Output  
 

H(bb) 
QCD

(100)

secondary  
vertex 
inputs

track 
inputs

expert  
inputs

(60 tracks, 8 inputs per track)

(5 SVs, 2 inputs per SV)

(27 inputs)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tagging efficiency (H ! bb̄)

10�3

10�2

10�1

100

M
is

ta
gg

in
g

ra
te

(Q
C

D
)

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet msd < 200 GeV

DeepDoubleX, AUC = 93.0%
double-b, AUC = 91.7%

No big gain in performance…

WHY?

(1) MAYBE WE NEED A BIGGER NETWORK, MORE DATA,
MORE TRAINING TIME, …

OR

(2) MAYBE WE NEED A SMARTER NETWORK

NETWORK TUNING: PARALLELIZATION & RESOURCES 52

‣ Increasing reuse factor, decreases resources

5000 DSPs (90%)

800 DSPs (15%)

NETWORK TUNING: QUANTIZATION 53

‣ Scan the bit width 
until you reach  
optimal performance

Full performance
with 16 bits

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Quantization

 29

0101.1011101010
width

fractionalinteger

Full performance
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance
at 8 fractional bits

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C
ap_fixed<width,integer> • Quantify the performance of the classifier with the AUC

• Expected AUC = AUC achieved by 32-bit floating point
inference of the neural network

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

54UPGRADING THE LEVEL-1 TRIGGER (BEFORE)

Global Trigger

ECAL HCAL  
HB/HE µHTR

HCAL
HF µHTR

Calo Trigger Layer-1

Calo Trigger Layer-2

Calorimeter Trigger

~4μs
 Sorting/Merging Layer 

Track Finder Layer

Muon Port
Card

CSC RPC

Splitters

Muon Trigger

DT

TwinMux 
fan-out

Link Board

CPPF 
fan-out

Endcap Overlap Barrel

Endcap Overlap Barrel

Global Muon
Trigger

55UPGRADING THE LEVEL-1 TRIGGER (AFTER)

Global Trigger

ECAL HCAL  
HB/HE µHTR

HCAL
HF µHTR

Calo Trigger Layer-1

Calo Trigger Layer-2

Calorimeter Trigger

~4μs
 Sorting/Merging Layer 

Track Finder Layer

Muon Port
Card

CSC RPC

Splitters

Muon Trigger

DT

TwinMux 
fan-out

Link Board

CPPF 
fan-out

Endcap Overlap Barrel

Endcap Overlap Barrel

Global Muon
Trigger

 GEM +  
 iRPC

Global Trigger

M
ax

:
1
2
.5

μs

Track Trigger
Outer Tracker

Track Finder

Trigger Primitive
Generator

Endcap Calo

Endcap Calo
Trigger Primitive

Generator

Correlator Trigger

Global Trigger

Muon Port
Card

CSC RPC

Splitters

ECAL HCAL 
 HB

HCAL 
 HF

Barrel Calorimeter Trigger

Muon Trigger

DT

fan-out

Calorimeter Trigger

Link Board

fan-out

single xtal

Muon Track Finding/Sorting/Merging

Endcap Overlap Barrel

55

More and better information available in the Level-1 trigger! What can we do with it?

CASE STUDY: JET TAGGING INPUTS 56

‣ 16 expert observables provide separation between top, W/Z,
and quark/gluon

mass

ECFs

multiplicity

Observables

mmMDT

N�=1,2
2

M�=1,2
2

C�=0,1,2
1

C�=1,2
2

D�=1,2
2

D(↵,�)=(1,1),(1,2)
2Õ

z log z
Multiplicity

Table 1: A summary of the observables used in the analysis.

this study [51–54]. A brief description of each of these variables is presented in Ref. [55]. These are
used as expert-level inputs to a neural network classifier which is near optimal3.

Benchmark networks and floating point performance

We train a neural network for the classification task of q, g, W , Z , and t discrimination. The data are
randomly split into training (60%), validation (20%), and testing (20%) datasets. The input features
are standardized by removing the mean and scaling to unit variance. The architecture, illustrated in
Fig. 4 (left), is a fully-connected neural network with three hidden layers. The activation function
for the hidden layers is ReLU [56] while the output layer activation function is a softmax function to
provide probabilities for each class. The categorical cross-entropy loss function is minimized with
and without L1 regularization of the weights (Sec. 2.3) using the Adam algorithm [57] with an initial
learning rate of 10�4 and a minibatch size of 1024. The learning rate is halved if the validation loss
fails to improve over 10 epochs. Training is performed on an AWS EC2 P2 GPU instance [58] with
Keras [10]. We also consider a simpler architecture with one hidden layer, see Fig. 4 (right), when
studying the final FPGA implementation on a specific device. This is described further in Sec. 3.3.

The performance of the neural network classifier is shown in Fig. 5. The general features of this
performance plot are typical of jet substructure classification tasks. Top-quark jets, by virtue of their
large mass and three-prong nature, have the best separation from the rest of the jet types. The W and
Z jets are similar in performance because of their masses and two-prong nature while quark and gluon
jets are notoriously challenging to classify. Given this multi-jet classifier performance, we explore
how to implement such a neural network architecture in an FPGA using hls4ml.

3More sophisticated approaches exist, but the goal of this study is not to achieve better performance than existing
algorithms. Instead, the goal is to examine the implementation of several e�ective neural network architectures in FPGAs.

– 8 –

Retrain
with L1 Prune

…

Train
with L1 Prune

1st iteration

2nd iteration

Retrain
with L1 Prune

7th iteration

……

NEURAL NETWORK ZOO 58

… …

NEURAL NETWORK ZOO 58

… …

▸ You have a task to
accomplish, which can be
represented as a smooth
function from your inputs to
the answer you want

NEURAL NETWORK ZOO 58

… …

▸ You have a task to
accomplish, which can be
represented as a smooth
function from your inputs to
the answer you want

▸ Train an algorithm to learn
an approximation of the
optimal solution function  
(Machine Learning)

NEURAL NETWORK ZOO 58

… …

▸ You have a task to
accomplish, which can be
represented as a smooth
function from your inputs to
the answer you want

▸ Train an algorithm to learn
an approximation of the
optimal solution function  
(Machine Learning)

▸ NNs are the best ML solution
on the market today

NEURAL NETWORK ZOO 58

… …

▸ You have a task to
accomplish, which can be
represented as a smooth
function from your inputs to
the answer you want

▸ Train an algorithm to learn
an approximation of the
optimal solution function  
(Machine Learning)

▸ NNs are the best ML solution
on the market today

▸ Each node performs a
math operation on the
input

NEURAL NETWORK ZOO 58

… …

▸ You have a task to
accomplish, which can be
represented as a smooth
function from your inputs to
the answer you want

▸ Train an algorithm to learn
an approximation of the
optimal solution function  
(Machine Learning)

▸ NNs are the best ML solution
on the market today

▸ Each node performs a
math operation on the
input

▸ Edges represent the flow
of nodes’ inputs & outputs

NEURAL NETWORK 59

ℓk
j = ϕ (∑i wijℓk−1

i + bj)

ℓk−1
i

NEURAL NETWORK 59

ℓk
j = ϕ (∑i wijℓk−1

i + bj)▸ Classic feed forward
architecture with some
modifications responsible
for revolutions in
computer vision,
language processing, etc.

ℓk−1
i

NEURAL NETWORK 59

ℓk
j = ϕ (∑i wijℓk−1

i + bj)▸ Classic feed forward
architecture with some
modifications responsible
for revolutions in
computer vision,
language processing, etc.

▸ Each input multiplied by
a weight

ℓk−1
i

wij

NEURAL NETWORK 59

ℓk
j = ϕ (∑i wijℓk−1

i + bj)▸ Classic feed forward
architecture with some
modifications responsible
for revolutions in
computer vision,
language processing, etc.

▸ Each input multiplied by
a weight

▸ Weighted values are
summed, bias is added ℓk−1

i

wij

NEURAL NETWORK 59

ℓk
j = ϕ (∑i wijℓk−1

i + bj)▸ Classic feed forward
architecture with some
modifications responsible
for revolutions in
computer vision,
language processing, etc.

▸ Each input multiplied by
a weight

▸ Weighted values are
summed, bias is added

▸ Nonlinear activation
function is applied

ℓk−1
i

wij ℓk
j

NEURAL NETWORK 59

ℓk
j = ϕ (∑i wijℓk−1

i + bj)▸ Classic feed forward
architecture with some
modifications responsible
for revolutions in
computer vision,
language processing, etc.

▸ Each input multiplied by
a weight

▸ Weighted values are
summed, bias is added

▸ Nonlinear activation
function is applied

ℓk−1
i

wij ℓk
j

A sufficiently “wide” neural network
can approximate any function!

TRAINING 60

TRAINING 60

▸ A network is trained by
specifying inputs, targets,  
and a loss function

▸ Target is what the network
should learn for that input,
can be a “truth” label
(supervised) or the input
itself (unsupervised)

▸ Loss function quantifies
how many mistakes the
network makes

▸ Training is the minimization
of the loss function by
varying the network
parameters

TRAINING 60

▸ A network is trained by
specifying inputs, targets,  
and a loss function

▸ Target is what the network
should learn for that input,
can be a “truth” label
(supervised) or the input
itself (unsupervised)

▸ Loss function quantifies
how many mistakes the
network makes

▸ Training is the minimization
of the loss function by
varying the network
parameters

82

SV
s

/ 0
.4

 u
ni

ts

210

310

410

Data
udsg
c
c from gluon splitting
b
b from gluon splitting

CMS

Double-muon-tagged AK8 jets
Muon-enriched multijet sample

 (AK8 jets) > 250 GeV
T

p

 (13 TeV, 2016)-135.9 fb

 2D flight distance significance0SV
0 2 4 6 8 10 12 14 16 18 20D

at
a/

M
C

0.5

1

1.5

SV
s

/ 1
 G

eV

210

310

410

510

610
Data
udsg
c
c from gluon splitting
b
b from gluon splitting

CMS

Double-muon-tagged AK8 jets
Muon-enriched multijet sample

 (AK8 jets) > 250 GeV
T

p

 (13 TeV, 2016)-135.9 fb

 mass [GeV]1SV
0 2 4 6 8 10 12 14 16 18 20D

at
a/

M
C

0.5

1

1.5

Je
ts

 /
1.

3
un

its

1

10

210

310

410

510

610 Data
udsg
c
c from gluon splitting
b
b from gluon splitting

CMS

Double-muon-tagged AK8 jets
Muon-enriched multijet sample

 (AK8 jets) > 250 GeV
T

p

 (13 TeV, 2016)-135.9 fb

z variable
0 10 20 30 40 50 60D

at
a/

M
C

0.5

1

1.5

Je
ts

 /
0.

04
 u

ni
ts

210

310

410

510

610
Data
udsg
c
c from gluon splitting
b
b from gluon splitting

CMS

Double-muon-tagged AK8 jets
Muon-enriched multijet sample

 (AK8 jets) > 250 GeV
T

p

 (13 TeV, 2016)-135.9 fb

Double-b discriminator
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1D

at
a/

M
C

0.5

1

1.5

Figure 55: Distribution of the 2D flight distance significance of the secondary vertex associated
with the first t axis (upper left), the mass of the secondary vertex associated with the second
t axis (upper right), the z variable (lower left), and the double-b discriminator (lower right)
for double-muon-tagged AK8 jets with pT > 250 GeV. The simulated contributions of each
jet flavour are shown with a different colour. The total number of entries in the simulation is
normalized to the number of observed entries in data. The first and last bin of the upper and
lower right histograms contain the underflow and overflow entries, respectively.

Caterina Vernieri (FNAL)

Efficiency measurement in data

24

• Since there is no H/Z(bb̄) signal (yet!) we use:
• g(bb̄) jets as a proxy to measure the signal efficiency
• Jet selection has been designed to ensure jets are signal-like
• High AK8 pT jet (pT > 250 GeV)
• double-muon tagged jets (muon with pT > 7 GeV)
• mass cut (>50 GeV)

µµ

Z(bb̄) by the end of the talk

EFFICIENCY IN DATA 61

‣ Using g→bb jets as a proxy in double muon tagged jet
sample

‣ Associated data/MC uncertainty 3-5%

DOUBLE-B TAGGER INPUTS 62

36

 of first track above b thresholdσ2D IP/
0 5 10 15 20

Je
ts

 /
0.

2
un

its

4−10

3−10

2−10

1−10

1

10

210 b b→H
b b→Multijet, g

Multijet, single b
Multijet, udsg

AK8 jet
 > 300 GeV

T
p
50 < m < 200 GeV

13 TeV, 2016

CMS
Simulation

Number of SVs
0 1 2 3 4 5 6 7 8 9

Je
ts

 /
1

un
it

4−10

3−10

2−10

1−10

1

10

210

310 b b→H
b b→Multijet, g

Multijet, single b
Multijet, udsg

AK8 jet
 > 300 GeV

T
p
50 < m < 200 GeV

13 TeV, 2016

CMS
Simulation

 energy ratio0SV
0 0.5 1 1.5 2 2.5 3 3.5 4

Je
ts

 /
0.

04
 u

ni
ts

4−10

3−10

2−10

1−10

1

10

210 b b→H
b b→Multijet, g

Multijet, single b
Multijet, udsg

AK8 jet
 > 300 GeV

T
p
50 < m < 200 GeV

13 TeV, 2016

CMS
Simulation

z variable
0 5 10 15 20 25 30 35 40

Je
ts

 /
0.

4
un

its

4−10

3−10

2−10

1−10

1

10

210 b b→H
b b→Multijet, g

Multijet, single b
Multijet, udsg

AK8 jet
 > 300 GeV

T
p
50 < m < 200 GeV

13 TeV, 2016

CMS
Simulation

Figure 24: Distribution of 2D impact parameter significance for the most displaced track rais-
ing the mass above the b hadron mass threshold as described in the text (upper left), number
of secondary vertices associated with the AK8 jet (upper right), vertex energy ratio for the
secondary vertex with the smallest 3D flight distance uncertainty (lower left), and z variable
described in the text (lower right). Comparison between H ! bb jets from simulated samples
of a Kaluza–Klein graviton decaying to two Higgs bosons, and jets in an inclusive multijet sam-
ple containing zero, one, or two b quarks. The AK8 jets are selected with pT > 300 GeV and
pruned jet mass between 50 and 200 GeV. The distributions are normalized to unit area. The
last bin includes the overflow entries.

5.1 Discriminating variables 5

subjets fatjet double-b

τ-axis1

τ-axis2

Figure 1: Schematic comparison of the fat jet and subjet b tagging approaches and the presented
double-b tagger.

5.1 Discriminating variables

We present here the discriminating variables that are used as input to the MVA algorithm to
distinguish between the signal H! bb jets and the background from inclusive QCD jets. The
variables rely on reconstructed tracks, secondary vertices (SV) as well as the two-SV system.
Since the angular separation between the decay products of a resonance depend on the mo-
mentum and the mass of the resonance, in order to keep the algoritm as general as possible,
one of the guiding principle in the selection of input variables is that the variables do not have
strong dependence on the jet pT and the jet mass.

Tracks with pT > 1 GeV are associated to jets in a cone DR <0.8 around the jet axis, where
the jet axis is defined by the primary vertex and the direction of the jet momentum. Then we
associate each track to the closest t-axis. The distance of a track to the t-axis is defined as the
distance of closest approach of the track to the axis. In order to reject tracks from pileup this
quantity is required to be less than 700 µm. The point on the track that is closest to the t-axis
must be within 5 cm of the primary vertex. The contamination from decay products of long-
lived particles, e.g. neutral kaons, is reduced by removing pairs of tracks compatible with the
kaon masses within 30 MeV. The impact parameter, IP, of a track with respect to the primary
vertex is used to distinguish the decay products of a b hadron from prompt tracks. The IP is
calculated in three dimensions and the impact parameter significance, SIP, is defined as the
ratio of the IP to its estimated uncertainty. Several input variables related to the presence and
properties of secondary vertices coming from b hadron decay have been investigated. Using
tracks with pT > 0.8 GeV, secondary vertices are identified through the Inclusive Vertex Finder
(IVF) [4, 10] algorithm. This algorithm is not seeded from tracks associated to the reconstructed
jets, but it uses as input the collection of reconstructed tracks in the event. The reconstructed
secondary vertices are associated to jets in a cone DR <0.7 and then to the closest t-axis within
that jet. For each t-axis, track momenta of the constituent tracks from all the SVs associated to
a given t-axis are added to compute the SV mass and the SV transverse momentum for that
t-axis.

The input variables to the double-b tagger MVA discriminant are:

• The first four SIP values for selected tracks ordered in decreasing SIP;
• For each t-axis we consider the first two SIP values for their respective associated

6 5 Double-b tagger algorithm

tracks ordered in decreasing SIP, to further discriminate against single b quark and
light flavor jets from QCD when one or both SV are not reconstructed due to IVF
inefficiencies;

• The measured IP significance in the plane transverse to the beam axis, 2D SIP, of
the first two tracks (first track) that raises the SV invariant mass above the bottom
(charm) threshold of 5.2 (1.5) GeV;

• The number of SV associated to the jet;
• The significance of the 2D distance between the primary vertex and the secondary

vertex, flight distance, for the SV with the smallest 3D flight distance uncertainty, for
each of the two t-axes;

• The DR between the SVs with the smallest 3D flight distance uncertainty and its
t-axis, for each of the two t-axes;

• The relative pseudorapidity, hrel, of the tracks from all SVs with respect to their t-
axis for the three leading tracks ordered in increasing hrel, for each of the two t-axes;

• The total SV mass, defined as the total mass of all SVs associated to a given t-axis,
for each of the two t-axes;

• The ratio of the total SV energy, defined as the total energy of all SVs associated to
a given t-axis, and the total energy of all the tracks associated to the fat jet that are
consistent with the primary vertex, for each of the two t-axes;

• The information related to the two-SV system, the z variable, defined as:

z = DR(SV0, SV1) ·
pT,SV1

m(SV0, SV1)
(2)

where SV0 and SV1 are SVs with the smallest 3D flight distance uncertainty. The z

variable helps rejecting the bb background from gluon splitting relying on the dif-
ferent kinematic properties compared to the bb pair from the decay of a massive
resonance.

We select as discriminating variables all those with enough classifier separation (a default out-
put of TMVA), that show small correlation with the other inputs and improve the QCD back-
ground discrimination by at least 5%. In total 27 variables are used as input to the multivariate
discriminant. The most discriminating variables are the SIP for the most displaced tracks, the
vertex energy ratio for SV0, and the 2D SIP for the first track above bottom threshold. In Fig. 2
distributions for some discriminating input variables are shown for the signal H! bb jets and
the background QCD jets. In particular g ! bb and single b quark production are shown sep-
arately as well as light flavor jet contribution. The secondary vertex multiplicity and the vertex
energy ratio for SV0, along with SIP of the first track above bottom threshold show a good sep-
aration between the H! bb jets and different QCD jet components. The z variable shows good
discrimination against the g ! bb contribution.

Several variables related to the presence and properties of soft leptons arising from the b hadron
decay have also been investigated. Despite a small gain in performance, the soft lepton vari-
ables were excluded from the final list of input variables since they could introduce undesired
biases in the performance measurement in data where µ-tagged jets from QCD multijets events
are used.

ADDITIONAL DEEP AK8 / DEEP DOUBLE-B TAGGER INPUTS 63

9

2.4.2 AK8 input features160

The input features used by AK8 tagging are similar to those used in the AK4 DeepFlavour161

tagger. They are organized into three groups: inclusive (charged and neutral) PF candidates,162

charged PF candidates, and secondary vertices. We take up to 100 inclusive PF candidates,163

sorted in descending pT order, and up to 60 charged PF candidates and up to 5 secondary164

vertices, ordered by impact parameter significance. The full lists of variables used in each165

group are summarized in Table 10 to 12.166

Table 10: Full list of charged PF candidate features used as input to the DeepAK8 network
feature comment
trackEtaRel BTV
trackPtRatio BTV
trackPParRatio BTV
trackSip2dVal BTV
trackSip2dSig BTV
trackSip3dVal BTV
trackSip3dSig BTV
trackJetDistVal BTV
pT(cPF)/pT(j)
Erel(cPF)
Df(cPF, j)
Dh(cPF, j)
DR(cPF, j)
DRm(cPF, SV)
DR(cPF, subjet 1)
DR(cPF, subjet 2)
c2

n

quality
dz

Sz

dxy

Sxy

track dptdpt track covariance
track detadeta track covariance
track dphidphi track covariance
track dxydxy track covariance
track dzdz track covariance
track dxydz track covariance
track dphidxy track covariance
track dlambdadz track covariance

3 Deep neural network architectures167

The neural network structure was designed to be able to make good use of the large input we168

give to the neural network. In contrast to previous proposals we use more information per169

particles candidate or vertex. This lead to the special challenge to digest the huge amount of170

input features. In order to not expose the later layer to such a huge amount of features we171

build a reduced set features per particle (or per few particles) candidate or vertex by so called172

10 3 Deep neural network architectures

Table 11: Full list of inclusive PF candidate features used as input to the DeepAK8 network
feature
pT(PF)/pT(j)
Erel(PF)
Df(PF, j)
Dh(PF, j)
DR(PF, j)
DRm(PF, SV)
DR(PF, subjet 1)
DR(PF, subjet 2)
wp(PF)
fHCAL

Table 12: Full list of secondary vertex features used as input to the DeepAK8 network
feature
pT(SV)/pT(j)
Erel(SV)
Df(SV, j)
Dh(SV, j)
DR(SV, j)
pT(SV)
mSV

Ntracks(SV)
c2

n(SV)
dxy(SV)
Sxy(SV)
d3D(SV)
S3D(SV)
cos q(SV)

10 3 Deep neural network architectures

Table 11: Full list of inclusive PF candidate features used as input to the DeepAK8 network
feature
pT(PF)/pT(j)
Erel(PF)
Df(PF, j)
Dh(PF, j)
DR(PF, j)
DRm(PF, SV)
DR(PF, subjet 1)
DR(PF, subjet 2)
wp(PF)
fHCAL

Table 12: Full list of secondary vertex features used as input to the DeepAK8 network
feature
pT(SV)/pT(j)
Erel(SV)
Df(SV, j)
Dh(SV, j)
DR(SV, j)
pT(SV)
mSV

Ntracks(SV)
c2

n(SV)
dxy(SV)
Sxy(SV)
d3D(SV)
S3D(SV)
cos q(SV)

