
A Look at the Multilayer Perceptron
With application in particle physics

Justin Anguiano

University of Kansas

July 16, 2020

1 / 23



Introduction

Presenting : A look at the elementary concepts of an Articficial Neural

Network (ANN)

Goal : to build intuition on how to use ANN

Outline:

1. Familiarize concepts of Multilayer Perceptron

2. Introduce basic particle physics classification problem

3. Highlight some challenges in real life application

2 / 23



ML Concepts – Introduction

What is an ANN?

Computing systems vaguely inspired by the biological neural

networks that constitute animal brains.

What is a MLP?

a class of feedforward artificial neural network (ANN)

at least three layers of nodes: an input layer, a hidden layer

and an output layer

each node is a neuron that uses a nonlinear activation function

What does it do?

Its multiple layers and non-linear activation enable it to

distinguish data that is not linearly separable

Typically used in classification problems

3 / 23



ML Concepts – MLP Breakdown

Common depiction of an MLP
Lets dive into each element of this figure

https://medium.com/coinmonks/
the-artificial-neural-networks-handbook-part-1-f9ceb0e376b4

4 / 23

https://medium.com/coinmonks/the-artificial-neural-networks-handbook-part-1-f9ceb0e376b4
https://medium.com/coinmonks/the-artificial-neural-networks-handbook-part-1-f9ceb0e376b4


ML Concepts – MLP Breakdown

Input layer
This layer represents the input data matrix

+ Data contains N entries
+ Each node represents a feature of a data element
+ A data entry is described by 4 variables ⇒ (N, 4)
+ Data traverses network 1 row at a time

Toy Example: (Identifying fish) Suppose we have a labeled dataset with
various fish – We want to use the network to distinguish the fish

Feature Matrix (X ):
Size Color FinType Location
Size Color FinType Location

...
Size Color FinType Location


Data Labels (Y ):

Tuna
Salmon

...
Shark


5 / 23



ML Concepts – MLP Breakdown

Network Weights
The lines between nodes are simply matrix
multiplication

+ This represents the linear combination
part of the network

+ Each feature is weighted and mapped to
nodes in the hidden layer

+ Weight matrix dimension is such that it maps to the desired hidden
layer dimension (4, 5)

Toy Example:(Identifying fish, i-th data element) X[i,:]W

[
Size Color FinType Location

] 
W11 W12 W13 W14 W15

W21 W22 W23 W24 W25

W31 W32 W33 W34 W35

W41 W42 W43 W44 W45



6 / 23



ML Concepts – MLP Breakdown

Hidden Layers
Hidden nodes are weighted linear combinations
of data features

+ Can have as many hidden nodes as you want

+ Each linear combination gets a nonlinear
transformation

+ Transformation through an activation function

Toy Example: Identifying fish, Hidden node contents X[i,:]W[:, j]

X [i , :]W [:, 1] = W11Size+W21Color +W31FitType+W41Location

X [i , :]W [:, 2] = W12Size+W22Color +W32FitType+W42Location

...
X[i,:]W[:, j] =

∑
k W[k,j]X[i,k]

7 / 23



ML Concepts – MLP Breakdown

Hidden Layers
Hidden nodes are weighted linear combinations
of data features

+ Each linear combination gets a nonlinear
transformation

+ Can be any non-linear function

A popular activation function: RelU f
(
X[i,:]W[:, j]

)

f(x) =

{
0 if x < 0

x if x ≥ 0

8 / 23



ML Concepts – MLP Breakdown

Output Layer
Performs the classification task on the transformed
input data

+ Typically a logistic regression layer

+ Outputs probability that data element belongs
to a certain class(label)

+ Can scale to any number of classes

Toy Example: Identifying fish
Input X[i,:] Layers Label Prob.

Salmon −→
[
HL
]
→
[
OL
]
−→

 0.95 Salmon
0.025 Tuna
0.025 Shark



9 / 23



ML Concepts – MLP Recap

+ Data feeds through the network row by row

+ The element then undergoes a series of linear combinations and non
linear transformations in each layer

+ The output layer performs the classification task

Toy Example: Data Visualization

Pre-Network Post-Network
https://atcold.github.io/pytorch-Deep-Learning/en/week01/01-3/

10 / 23

https://atcold.github.io/pytorch-Deep-Learning/en/week01/01-3/


ML Concepts – Training

Training is finding the set of weights W in each layer that minimize the
chosen loss function

+ Derivatives between consecutive layers are dependent

+ Must also be calculated backwards through the network “back
propagation”

+ Popular loss function: cross entropy

Cross Entropy:
−
∑M

c=1 yo,c log(po,c)

c represents class label of M
classes

yo,c is the true one hot label for
data element o

po,c is the predicted probability
of class c

11 / 23



Outline:

1. Familiarize concepts of Multilayer Perceptron

2. Introduce basic particle physics classification problem

3. Highlight some challenges in real life application

12 / 23



Physics Application – Introduction

MLP can be used to aid in the search for particle dark matter

Soft charged particles could be produced in rare dark matter events

We use an ANN to distinguish charged particles of interest with
particles that can imitate the desired signature

13 / 23



Physics Application – SUSY

KU CMS analysis in progress – searching for particle dark matter via
compressed SUSY models

Protons P1, P2 collide producing
SUSY χ̃±

1 ,χ̃2

SUSY χ̃±
1 ,χ̃2 decays to D.M. χ̃0

1

and known particles W±,Z

W±,Z immediately decay into
charged particles(µ±) that we see
in the detector

A compressed scenario implies χ̃±
1 ,χ̃2 and χ̃0

1 are very close in rest mass

With compression the decay products of χ̃±
1 ,χ̃2 are soft (low momentum),

including ending charged particles

The current CMS detector is less optimized for correctly identifying soft µ±

If we can optimize soft charged particle classification, we have a better chance
of discovering compressed χ̃±

1 ,χ̃2, and χ̃0
1 14 / 23



Physics Application – Charge Particle Reconstruction

Charged particles bend in Mag. field
and create “tracks”

Tracks are connecting the dots: “hits”
that are fit with a curve

Main particle of interest is the
Muon(µ±)

– at high energies µ is easily correctly
identified

– low energies leaves room for ambiguity

Sometimes other particles can be
reconstructed incorrectly as a muon

– Common fakes: Pion(π±), Electron(e±),

Kaon(K±), Proton(p), or non physical junk
particles

– created from punch through
– junk particles are a result of hit

combinatorics

15 / 23



Physics Application – ML Model

Use fully simulated processes to get collections of reconstructed
muons

This collection has reconstructed labels and truth(Gen.) labels
Sometimes reconstructed can’t be matched to a truth label, these
are treated as a separate class “Unmatched”

Attempt to identify true muons(Class 0) against Unmatched(Class 1)

Network inputs are measured quantities and track quality metrics

16 / 23



Physics Application – Network Architecture

Architecture

4 hidden layers

128 neurons/layer

ReLU activation

Softmax output layer

Adam optimizer

Categorical cross entropy loss

Training

10/90 validation/training split

35 Chunks

50 epochs, 2 epochs/chunk

100 batch size/chunk

Class0/Class1 even sampling

1.5M True Muons
1.5M Unmatched

17 / 23



Physics Applications – Model Results

0 5 10 15 20 25 30 35 40
Muon pT (GeV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1∈

True Muon

Fake Muon

CMS Preliminary Binary Classification Efficiency

0 5 10 15 20 25 30 35 40
Muon pT (GeV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ur

ity

True Muon

Fake Muon

CMS Preliminary Binary Classification Purity

+ Results shown as a function of muon momentum

+ Class labeled when Pclass > 50%

+ Efficiency for true muons ∼ 92%

+ Tested on data sampled the same as training

+ Efficiency = TP
TP+FN Purity = TP

TP+FP

18 / 23



Outline:

1. Familiarize concepts of Multilayer Perceptron

2. Introduce basic particle physics classification problem

3. Highlight some challenges in real life application

19 / 23



Challenges – (1) Building your network

What input variables to choose?

How big should the network be?

How much data do you need?

What values for model hyperparameters do I choose?

What loss/activation functions are best?

No good answer – just guess and check many configurations

20 / 23



Challenges – (2) Normalization

Variables in the input data need to be small

After a sequence of summations, inputs become large

In the final layer, with logistic regression, that large number is
exponentiated

Easy to go beyond the double precision limit and break the model

P(Ci = j) = eX [i,:] W [:, j]∑k
`=1 e

X [i,:] W [:, `]

21 / 23



Challenges – (3) Really Big Data

For our case we needed very large statistics to properly train

Data is too big to load into memory and train all at once

Load data in “chunks”

Chunks are trained iteratively

Model is tuned to learn more slowly

If weights change too rapidly model will have forgotten the first
chunk when it gets to the last

0 5 10 15 20 25 30 35 40
Muon pT (GeV)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∈

True Muon

Fake Muon

CMS Preliminary Binary Classification Efficiency

Example:
Model trained asymmetrically
Chunk0 90% class 0 and 10% class 1
Chunk1 10% class 1 and 90% class 0

22 / 23



The End.

23 / 23


