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Quantum Information: the New 

Frontier?
• Exponential increases in processing power

• Possibility of computing “impossible” 

things
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For several decades, macroscopic quantum 

computers have been “ten years away”

Hardware problems of

• scaling

• noise

• decoherence

Software problems such as error correction

• Algorithm construction - not easy even for 

simple problems!
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Standard Approaches

• “building block” strategy: a procedure is 

formulated as a sequence of steps 

(quantum gates)’ or alternatively

• Analog computing strategy in which the 

ground state of a physical system is the 

answer to a binary optimization problem
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The Power of quantum 

computing?
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Quantum machine learning

• Generate truly quantum “algorithms”

• Discover quantum advantage

• Resilience to disturbances/errors in 

models

• Resilience to decoherence

• Resilience to incomplete/damaged data

• Automatic scaleup

• Universality
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2-slit experiment: bullets

Top slit open

Bottom slit open

Both slits open – additive probabilities for 

exclusive events - Laplace
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2-slit water experiment -

interference
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Electron

gun
CRT

How about one at a time?
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Look for the electrons

• See none: W

• See them all: P

• See some: W+P

• Worse – if we COULD 

look (but don’t)! - P
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Classical mechanics

• a few nearby 

paths
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Schrodinger Algorithm
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How to do Quantum Mechanics
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ȁ ۧ0 or ȁ ۧ1 vector “in z basis”: 
1
0

or 
0
1

ۧȁ𝜓 = 𝛼ห ۧ0 + 𝛽ȁ ۧ1 , α, 𝛽𝜖ℂ

= cos
𝜃

2
อ ۧ0 + 𝑒𝑖𝜙 sin

𝜃

2
ȁ ۧ1

Compare: 
𝑎
𝑏
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Qubits vs classical bits
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Multiple qubits
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ȁ ۧ0 ȁ ۧ0 ȁ ۧ0 ȁ ۧ1 ȁ ۧ1 ȁ ۧ0 ȁ ۧ1 ȁ ۧ1 , or ȁ ۧ00 ȁ ۧ01 ȁ ۧ10 ȁ ۧ11

ȁ ۧ𝜓 = 𝛼00ȁ ۧ00 + 𝛼01ȁ ۧ01 + 𝛼10ȁ ۧ10 + 𝛼11ȁ ۧ11

compare: 
𝑎
𝑏

𝑐
𝑑

Superposition gives us entanglement!
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Entanglement
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 |,|Two possible states:

+=+ |)sin(|)cos(|| Or:

Now suppose 

two electrons:
?)||)(||( ++ 

Check:

+++ |||| dcba

+ || daBell state:

+++ |||| 



Feedforward quantum 

temporal network

Starting with the Schrödinger equation

where 𝜌 is the density matrix and 𝐻 is the Hamiltonian. For an N-qubit 

system, the Hamiltonian 𝐻 is: 

where {𝜎} are the Pauli operators corresponding to each qubits, {𝐾} are the 

tunneling amplitudes, {𝜖} are the biases, and {𝜁} are qubit-qubit couplings. 

We encode the weights into these parameters.
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The general solution to the Schrodinger equation is 
mathematically isomorphic to the equation for 
information propagation in a neural network

Compare   
𝜕𝜌

𝜕𝑡
= −𝑖𝐿𝜌 , where 𝐿 =

2𝜋

𝑖ℎ
[… , 𝐻], to

where 𝜙𝑜𝑢𝑡𝑝𝑢𝑡 and 𝜙𝑖𝑛𝑝𝑢𝑡 are the output and input vector 
of the networks. 

𝐹𝑊 is the network operator, which depends on the 
neuron connectivity weight matrix 𝑊.
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For our system, 

• 𝜌 0 = Input state vector 

• 𝜌 𝑡𝑓 = Output state vector 

• 𝐾, 𝜖, 𝜁 = Weights of the network, which can 

be adjusted experimentally as functions of 

time for physical implementation

Our goal is to train the external parameters 

𝐾, 𝜖, 𝜁 (weights) via supervised learning 

using target outputs paired with specified inputs

Once trained, the parameters can be tested on 

additional inputs.  
KU Machine learning club 4 
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Training paradigms

1. Quantum Backprop (quantum 

simulation in Matlab)

2. Reinforcement Learning of Fourier 

Parameters (quantum simulation in 

Matlab)

3. Reinforcement Learning of quantum 

circuit (quantum simulation in Qiskit -

IBM, Q# - Microsoft)

4. Levenberg-Marquart

5. … KU Machine learning club 4 
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Given an initial state, ρ(0), the system evolves in time 
according to the Schrödinger equation:

We construct a Lagrangian to be minimized:

where we define the output measure M by:
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We take the first variation of L with respect 
to ρ, set it equal to zero, then integrate by 
parts to give:

with the boundary conditions at the final time 
T given by
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The gradient descent learning rule is given 

by 

for each weight parameter w, where  is the 

learning rate and

,
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Reinforcement Learning

1. Initial error E computed 

2. A parameter P is perturbed 

𝑃𝑛𝑒𝑤 = 𝑃 + ∆𝑃

3. New error computed with perturbed parameter

4. Error gradient computed 

𝐺𝑟𝑎𝑑 =
𝐸𝑛𝑒𝑤 − 𝐸

∆𝑃
5. Parameter updated using the gradient and a 

learning rate 𝑃 = 𝑃 − 𝜂𝐺𝑟𝑎𝑑 for each training pair 

and each parameter.
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Algorithm construction

• Can it do known classical neural network 
calculations?

– Logic gates yes

– Pattern recognition/classification yes

– Function reproduction yes

• Can it do known quantum calculations? 
Yes – this is quantum universality -

• Can it do UNKNOWN quantum 
calculations?
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Entanglement indicator

• What is essentially non-classical/quantum 
mechanical?
– Superposition – a “qubit” can be in simultaneous 

mutually exclusive states

– Entanglement – a consequence of superposition –
crucial to most quantum computing/information 
applications

– Separability is NP-hard (2003, Gurvitz)

****************************************************************
****

– Experimental measure for entanglement?

– Prepare a highly entangled state?
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QNN learns to calculate its own 

entanglement
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“Bootstrapping” to larger 

systems: a partial solution to the 

scaling problem

• Use trained parameter functions found for n as 
starting point for training functions for n+1

• Entanglement indicator:  for n qubits, 
𝑛
2

pairs; 
𝑛
3

triplets, etc.
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Power of interconnectivity
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Asymptotic limit?
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Benchmarking: classical problem

RVNN: 50,000 epochs

CVNN: 1000 epochs

QNN: 100 epochs
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Benchmarking: Quantum 

problem
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Reverse engineering
• Solovey-Kitaev Theorem: Any quantum 

operation can be approximated by a 

sequence of gates from any universal set 

(e.g., H, rotations, CNOT) 

• A solution to one of the challenges in q 

computing: state preparation

• The parameters bootstrap experimentally 

providing a possible mesoscopic pairwise 

entanglement indicator
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Noise and decoherence

• Real physical systems are noisy

• Models are always approximate

• Real quantum systems also 

decohere

• Classically, neural nets are 

robust to noise and to 

incomplete and/or damaged 

data

• QNN? – yes!
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Training with (magnitude) noise- parameters 

function  
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Training with (phase noise) decoherence-

parameters function  
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Robustness increases with size!
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The marriage of quantum computing and 

machine learning can

1. Design algorithms

2. Provide robustness to noise and to 

decoherence

3. Provide automatic scaleup

4. Equivalent universality

5. Work in any experimental implementation

6. Take unknown factors into account
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Learning: Choosing Adjustable Parameters from examples to get correct I->O map

• Quantum Dots – learned 2 input classical and quantum logic gates (1993-2002)

• Developed temporal and spatial architectures (1993-5)

• Learned 2, 3 qubit quantum gates (2005)

• Quantum processing and storage in spatial arrays (1993-2004)

• Genetic algorithm for finding pulse sequences for nmr computing (2009)

• Learned Entanglement Witness for 2,3, 4, 5, 6 qubits (2002-2008)

• Learned and corrected phase shifts in quantum states(2013)

• Learned Entanglement Indicator robust to Noise, Decoherence (2015)

• Learned Quantum Annealing to entangled states 2, 3, 4, 5, 6 qubits (2016)

• Complexity and power of qnn vs complex valued nn (2017)

• Bootstrapping (partial knowledge for inference to larger) (2018)

• Benchmarking against RVNN, CVNN (2019)

• Experimental entanglement witness for NISQ machines (2019)

Our Contributions to Quantum Machine Learning

Physical 

System

(Hardware)

Inputs Outputs

I1, I2, … In O1, O2, … On

Adjustable 

Parameters
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